|
[1]
|
Langston, J.W., Ballard, P., Tetrud, J.W. and Irwin, I. (1983) Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science, 219, 979-980. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Su, L., Zhang, J., Gomez, H., Kellum, J.A. and Peng, Z.Y. (2023) Mitochondria ROS and Mitophagy in Acute Kidney Injury. Autoph-agy, 19, 401-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tapias, V. (2019) Mitochondrial Dysfunc-tion and Neurodegeneration. Frontiers in Neuroscience, 13, Article 514192. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
He, Z., Ning, N., Zhou, Q., Khoshnam, S.E. and Farzaneh, M. (2020) Mitochondria as Atherapeutic Target for Ischemic Stroke. Free Radical Biology and Medicine, 146, 45-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bhatti, J.S., Bhatti, G.K. and Reddy, P.H. (2017) Mito-chondrial Dysfunction and Oxidative Stress in Metabolic Disorders—A Step towards Mitochondria Based Therapeutic Strategies. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1066-1077. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V. and Greenamyre, J.T. (2000) Chronic Systemic Pesticide Exposure Reproduces Features of Parkinson’s Disease. Nature Neuroscience, 3, 1301-1306. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Magalhaes, J., Tresse, E., Ejlerskov, P., et al. (2021) PIAS2-Mediated Blockade of IFN-β Signaling: A Basis for Sporadic Parkinson Disease Dementia. Molecular Psychiatry, 26, 6083-6099. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dauer, W. and Przedborski, S. (2003) Parkinson’s Disease: Mechanisms and Models. Neuron, 39, 889-909. [Google Scholar] [CrossRef]
|
|
[9]
|
Winklhofer, K.F. (2014) Parkin and Mitochondrial Quality Control: Toward Assembling the Puzzle. Trends in Cell Biology, 24, 332-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065.
|
|
[11]
|
Wasner, K., Smajic, S., Ghelfi, J., et al. (2022) Parkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation. Movement Disorders, 37, 1405-1415. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, L., Cho, Y.L., Tang, Y., et al. (2018) PTEN-L Is a Novel Protein Phosphatase for Ubiquitin Dephosphorylation to Inhibit PINK1-Parkin-Mediated Mitophagy. Cell Research, 28, 787-802. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Aerts, L., Craessaerts, K., De Strooper, B. and Morais, V.A. (2015) PINK1 Kinase Catalytic Activity Is Regulated by Phosphorylation on Serines 228 and 402. Journal of Biological Chemistry, 290, 2798-2811. [Google Scholar] [CrossRef]
|
|
[14]
|
Li, Y., Chen, H., Xie, X., et al. (2023) PINK1-Mediated Mitophagy Promotes Oxidative Phosphorylation and Redox Homeostasis to Induce Drug-Tolerant Persister Cancer Cells. Cancer Research, 83, 398-413. [Google Scholar] [CrossRef]
|
|
[15]
|
Yang, Y., Gehrke, S., Imai, Y., Huang, Z., Ouyang, Y., Wang, J.W., Yang, L., Beal, M.F., Vogel, H. and Lu, B. (2006) Mitochondrial Pathology and Muscle and Dopaminergic Neuron Degeneration Caused by Inactivation of Drosophila Pink1 Is Rescued by Parkin. Proceedings of the National Academy of Sciences of the United States of America, 103, 10793-10798. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A. and Guo, M. (2006) Drosophila Pink1 Is Required for Mitochondrial Function and Interacts Genetically with Parkin. Nature, 441, 1162-1166. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ando, M., Fiesel, F.C., Hudec, R., et al. (2017) The PINK1 p.1368N Mutation Affects Protein Stability and Ubiquitin Kinase Activity. Molecular Neurodegeneration, 12, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Grunewald, A., Kumar, K.R. and Sue, C.M. (2019) New Insights into the Complex Role of Mitochondria in Parkinson’s Disease. Progress in Neurobiology, 177, 73-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bender, A., Krishnan, K.J., Morris, C.M., et al. (2006) High Levels of Mitochondrial DNA Deletions in Substantia Nigra Neurons in Aging and Parkinson Disease. Nature Genetics, 38, 515-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gaare, J.J., Nido, G.S., Sztromwasser, P., Knappskog, P.M., Dahl, O., Lund-Johansen, M., Maple-Grodem, J., Alves, G., Tysnes, O.B., Johansson, S., Haugarvoll, K. and Tzoulis, C. (2018) Rare Genetic Variation in Mitochondrial Pathways Influences the Risk for Parkinson’s Disease. Movement Dis-orders, 33, 1591-1600. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Irrcher, I., Aleyasin, H., Seifert, E.L., Hewitt, S.J., Chhabra, S., Phillips, M., Lutz, A.K., Rousseaux, M.W., Bevilacqua, L., Jahani-Asl, A., Callaghan, S., MacLaurin, J.G., Winklhofer, K.F., Rizzu, P., Rippstein, P., Kim, R.H., Chen, C.X., Fon, E.A., Slack, R.S., Harper, M.E., McBride, H.M., Mak, T.W. and Park, D.S. (2010) Loss of the Parkinson’s Disease-Linked Gene DJ-1 Perturbs Mitochondrial Dynamics. Human Molecular Genetics, 19, 3734-3746. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Burbulla, L.F., Song, P., Mazzulli, J.R., Zampese, E., Wong, Y.C., Jeon, S., Santos, D.P., Blanz, J., Obermaier, C.D., Strojny, C., Savas, J.N., Kiskinis, E., Zhuang, X., Kruger, R., Surmeier, D.J. and Krainc, D. (2017) Dopamine Oxidation Mediates Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Science, 357, 1255-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lazarou, M., Sliter, D.A., Kane, L.A., et al. (2015) The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy. Nature, 524, 309-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Pa-papetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L. (1997) Mutation in the α-Synuclein Gene Identifified in Families with Parkinson’s Disease. Science, 276, 2045-2047. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rocha, E.M., De Miranda, B. and Sanders, L.H. (2018) α-Synuclein: Pathology, Mitochondrial Dysfunction and Neuroinflammation in Parkinson’s Disease. Neurobiology of Disease, 109, 249-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. and Goedert, M. (1998) α-Synuclein in Filamentous Inclusions of Lewy Bodies from Parkinson’s Disease and Dementia with Lewy Bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469-6473. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A. and Mucke, L. (2000) Dopaminergic Loss and Inclusion Body Formation in α-Synuclein Mice: Implications for Neurodegenerative Disorders. Science, 287, 1265-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Feany, M.B. and Bender, W.W. (2000) A Drosophila Model of Parkinson’s Disease. Nature, 404, 394-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kuwahara, T., Koyama, A., Gengyo-Ando, K., Masuda, M., Kowa, H., Tsunoda, M., Mitani, S. and Iwatsubo, T. (2006) Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans. Journal of Biological Chemistry, 281, 334-340. [Google Scholar] [CrossRef]
|
|
[30]
|
Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G. and Anandatheerthavarada, H.K. (2008) Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry, 283, 9089-9100. [Google Scholar] [CrossRef]
|
|
[31]
|
Li, W.W., Yang, R., Guo, J.C., Ren, H.M., Zha, X.L., Cheng, J.S. and Cai, D.F. (2007) Localization of α-Synuclein to Mitochondria within Midbrain of Mice. NeuroReport, 18, 1543-1546. [Google Scholar] [CrossRef]
|
|
[32]
|
Cali, T., Ottolini, D., Negro, A. and Brini, M. (2012) α-Synuclein Controls Mitochondrial Calcium Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interac-tions. Journal of Biological Chemistry, 287, 17914-17929. [Google Scholar] [CrossRef]
|
|
[33]
|
Luth, E.S. and Stavrovskaya, I.G. (2019) Measuring Mitochondrial Dysfunction Caused by Soluble α-Synuclein Oligomer. In: Bartels, T., Ed., α-Synuclein, Humana Press, New York 183-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Vasquez, V., Mitra, J., Wang, H., et al. (2020) A Mul-ti-Faceted Genotoxic Network of alpha-Synuclein in the Nucleus and Mitochondria of Dopaminergic Neurons in Parkin-son’s Disease: Emerging Concepts and Challenges. Progress in Neurobiology, 185, Article ID: 101729. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Faustini, G., Bono, F., Valerio, A., et al. (2017) Mitochon-dria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson’s Disease? Genes, 8, Article 377. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Behl, T., Kumar, S., Althafar, Z.M., Sehgal, A., Singh, S., Sharma, N., Badavath, V.N., Yadav, S., Bhatia, S., Al-Harrasi, A., Almoshari, Y., Almikhlafi, M.A. and Bungau, S. (2022) Explor-ing the Role of Ubiquitin-Proteasome System in Parkinson’s Disease. Molecular Neurobiology, 59, 4257-4273. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jaime, R., Lars, O. and Giuseppe, C. (2015) Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin. International Journal of Molecular Sciences, 16, 19458-19476. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhu, Q., Zhuang, X.X., Chen, J.Y., Yuan, N.N., Chen, Y., Cai, C.Z., Tan, J.Q., Su, H.X. and Lu, J.H. (2021) Lycorine, a Natural Alkaloid, Promotes the Degradation of α-Synuclein via PKA-Mediated UPS Activation in Transgenic Parkinson’s Disease Models. Phytomedicine, 87, Article ID: 153578. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ham, S.J., Lee, D., Xu, W.J., Cho, E., Choi, S., Min, S., Park, S. and Chung, J. (2021) Loss of UCHL1 Rescues the Defects Related to Parkinson’s Disease by Suppressing Glycolysis. Science Advances, 7, eabg4574. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Martins, M., Rosa, A., Guedes, L.C., Fonseca, B.V., Gotovac, K., Vi-olante, S., et al. (2011) Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson’s Disease. PLOS ONE, 6, e25443. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wijeyekoon, R.S., Moore, S.F., Farrell, K., Breen, D.P., Barker, R.A. and Williams-Gray, C.H. (2020) Cerebrospinal Fluid Cytokines and Neurodegeneration-Associated Proteins in Parkinson’s Disease. Movement Disorders, 35, 1062- 1066. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Jiang, P. and Dickson, D.W. (2018) Parkinson’s Disease: Experimental Models and Reality. Acta Neuropathologica, 135, 13-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, W., He, P., Huang, Y., et al. (2021) Selective Autophagy of Intracellular Organelles: Recent Research Advances. Theranostics, 11, 222-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zavodszky, E., Seaman, M.N., Moreau, K., et al. (2014) Mutation in VPS35 Associated with Parkinson’s Disease Impairs WASH Complex Association and Inhibits Autophagy. Nature Communications, 5, Article No. 3828. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Oueslati, A., Schneider, B.L., Aebischer, P. and Lashuel, H.A. (2013) Polo-Like Kinase 2 Regulates Selective Autophagic α-Synuclein Clearance and Suppresses Its Toxicity in Vivo. Proceed-ings of the National Academy of Sciences of the United States of America, 110, E3945-3954. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dernie, F. (2020) Mitophagy in Parkinson’s Disease: From Patho-genesis to Treatment Target. Neurochemistry International, 138, Article ID: 104756. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mishra, E. and Thakur, M.K. (2023) Mitophagy: A Promising Therapeutic Target for Neuroprotection during Ageing and Age-Related Diseases. British Journal of Pharmacology, 180, 1542-1561.
|
|
[48]
|
Riley, B.E., Lougheed, J.C., Callaway, K., Velasquez, M., Brecht, E., Nguyen, L., et al. (2013) Struc-ture and Function of Parkin E3 Ubiquitin Ligase Reveals Aspects of RING and HECT Ligases. Nature Communications, 4, Article No. 1982. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tang, Y., Wang, L., Qin, J., et al. (2023) Targeting Mitophagy to Promote Apoptosis Is a Potential Therapeutic Strategy for Cancer. Autophagy, 19, 1031-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Shi, R.Y., Zhu, S.H., Li, V., Gibson, S.B., Xu, X.S. and Kong, J.M. (2014) BNIP3 Interacting with LC3 Triggers Excessive Mitophagy in Delayed Neuronal Death in Stroke. CNS Neuroscience & Therapeutics, 20, 1045-1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Huang, C.F., Hsieh, Y.H., Yang, S.F., et al. (2023) Mitophagy Effects of Protodioscin on Human Osteosarcoma Cells by Inhibition of p38MAPK Targeting NIX/LC3 Axis. Cells, 12, Article 395. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lisanti, M.P., Martinez-Outschoorn, U.E., Chiavarina, B., Pavlides, S., Whitaker-Menezes, D., Tsirigos, A., et al. (2010) Understanding the “Lethal” Drivers of Tumor-Stroma Co-Evolution: Emerging Role(s) for Hypoxia, Oxidative Stress and Autophagy/Mitophagy in the Tumor Micro-Environment. Cancer Biology & Therapy, 10, 537-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Langston, J.W. and Ballard Jr, P.A. (1983) Parkinson’s Disease in a Chemist Working with 1-Methyl-4-Phenyl-1, 2, 5, 6-Tetrahydropyridine. The New England Journal of Medicine, 309, 310. [Google Scholar] [CrossRef]
|
|
[54]
|
Bezard, E., Gross, C.E., Fournier, M.C., Dovero, S., Bloch, B. and Jaber, M. (1999) Absence of MPTP-Induced Neuronal Death in Mice Lacking the Dopamine Transporter. Ex-perimental Neurology, 155, 268-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Przedborski, S., Tieu, K., Perier, C. and Vila, M. (2004) MPTP as a Mitochondrial Neurotoxic Model of Parkinson’s Disease. Journal of Bioenergetics and Biomembranes, 36, 375-379. [Google Scholar] [CrossRef]
|
|
[56]
|
Talpade, D.J., Greene, J.G., Higgins, D.S., et al. (2000) In Vivo Labeling of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase) in Rat Brain Using [3H] Di-hydrorotenone. Journal of Neurochemistry, 75, 2611-2621. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Parker Jr, W.D., Boyson, S.J. and Parks, J.K. (1989) Abnormalities of the Electron Transport Chain in Idiopathic Parkinson’s Disease. Annals of Neurology, 26, 719-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
González-Rodríguez, P., et al. (2021) Disruption of Mitochondrial Complex I Induces Progressive Parkinsonism. Nature, 599, 650-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Kristián, T. (2004) Metabolic Stages, Mitochondria and Calcium in Hypoxic/Ischemic Brain Damage. Cell Calcium, 36, 221-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Duchen, M.R. (1999) Contributions of Mitochondria to Animal Physiology: From Homeostatic Sensor to Calcium Signalling and Cell Death. The Journal of Physiology, 516, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Halestrap, A.P. and Pasdois, P. (2009) The Role of the Mi-tochondrial Permeability Transition Pore in Heart Disease. Biochim. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1787, 1402-1415. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Duchen, M.R. (2004) Roles of Mitochondria in Health and Dis-ease. Diabetes, 53, S96-S102. [Google Scholar] [CrossRef]
|
|
[63]
|
Zaichick, S.V., McGrath, K.M. and Caraveo, G. (2017) The Role of Ca2+ Signaling in Parkinson’s Disease. Disease Models & Mechanisms, 10, 519-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Santos, C.X., Tanaka, L.Y., Wosniak Jr, J. and Laurindo, F.R. (2009) Mechanisms and Implications of Reactive Oxygen Species Generation during the Unfolded Protein Response: Roles of Endoplasmic Reticulum Oxidoreductases, Mitochondrial Electron Transport, and NADPH Oxidase. Antioxid. Antioxi-dants & Redox Signaling, 11, 2409-2427. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Navarro-Romero, A., Montpeyó, M. and Martinez-Vicente, M. (2020) The Emerging role of the Lysosome in Parkinson’s Disease. Cells, 9, Article 2399. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Duda, J., Pötschke, C. and Liss, B. (2016) Converging Roles of Ion Channels, Calcium, Metabolic Stress, and Activity Pattern of Substantia nigra Dopaminergic Neurons in Health and Par-kinson’s Disease. Journal of Neurochemistry, 139, 156-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Schuster, S., Doudnikoff, E., Rylander, D., Berthet, A., Aubert, I., Ittrich, C., Bloch, B., Cenci, M.A., Surmeier, D.J., Hengerer, B., et al. (2009) Antagonizing L-Type Ca2+ Channel Reduces Development of Abnormal Involuntary Movement in the Rat Model of L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. Biological Psychiatry, 65, 518-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Ritz, B., Rhodes, S.L., Qian, L., Schernhammer, E., Olsen, J.H. and Friis, S. (2010) L-Type Calcium Channel Blockers and Parkinson Disease in Denmark. Annals of Neurology, 67, 600-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Sirabella, R., Sisalli, M.J., Costa, G., et al. (2018) NCX1 and NCX3 as Potential Factors Contributing to Neurodegeneration and Neuroinflammationinthe A53T Transgenic Mouse Model of Parkinson’s Disease. Cell Death & Disease, 9, Article No. 725. [Google Scholar] [CrossRef] [PubMed]
|