|
[1]
|
Hunter, D.J., March, L. and Chew, M. (2020) Osteoarthritis in 2020 and Beyond: A Lancet Commission. The Lancet (London, England), 396, 1711-1712. [Google Scholar] [CrossRef]
|
|
[2]
|
Long, H., Liu, Q., Yin, H., et al. (2022) Prevalence Trends of Site-Specific Osteoarthritis from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. Arthritis & Rheumatology (Hoboken, N.J.), 74, 1172-1183. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Neogi, T. (2013) The Epidemiology and Impact of Pain in Osteoarthritis. Osteoarthritis and Cartilage, 21, 1145-1153. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Adams, C.S. and Horton, W.E. (1998) Chondrocyte Apoptosis In-creases with Age in the Articular Cartilage of Adult Animals. The Anatomical Record, 250, 418-425. [Google Scholar] [CrossRef]
|
|
[5]
|
Dixon, S.J., Lemberg, K.M., Lampsrecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chang, S., Tang, M., Zhang, B., et al. (2022) Ferropto-sis in Inflammatory Arthritis: A Promising Future. Frontiers in Immunology, 13, Article ID: 955069. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yao, X., Sun, K., Yu, S., et al. (2021) Chondrocyte Ferroptosis Contribute to the Progression of Osteoarthritis. Journal of Orthopaedic Translation, 27, 33-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dolma, S., Lessnick, L.S., Hahn, C.W., et al. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. [Google Scholar] [CrossRef]
|
|
[9]
|
Lei, T., Qian, H., Lei, P., et al. (2021) Ferroptosis-Related Gene Signature Associates with Immunity and Predicts Prognosis Accurately in Patients with Osteosarcoma. Cancer Science, 112, 4785-4798. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yagoda, N., von Rechenberg, M., Zaganjor, E., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
张婧, 孙辉, 朱礼军, 等. 大鼠缺血性脑卒中早期miR-27a表达与铁死亡的关系[J]. 天津医药, 2022, 50(6): 595-600.
|
|
[12]
|
王君君, 李坚. 槲皮素通过抑制溶质载体家族7成员11表达诱导前列腺癌细胞铁死亡的临床研究[J]. 中国性科学, 2022, 31(9): 42-46.
|
|
[13]
|
杨浩, 刘之谦, 毕涛, 等. PTBP1对肝癌细胞铁死亡的影响和机制研究[J]. 中国现代普通外科进展, 2022, 25(2): 85-89.
|
|
[14]
|
Zhang, J., Wang, X., Guan, B., et al. (2022) Qing-Xin-Jie-Yu Granule Inhibits Ferroptosis and Stabilizes Atherosclerotic Plaques by Regulating the GPX4/xCT Signaling Pathway. Journal of Ethnopharmacology, 301, Article ID: 115852. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bao, Z., Liu, Y., Chen, B., et al. (2021) Prokineticin-2 Prevents Neuronal Cell Deaths in a Model of Traumatic Brain Injury. Nature Communications, 12, Article No. 4420. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ju, L., Shi, Y. and Liu, G. (2022) Identification and Validation of a Ferroptosis-Related lncRNA Signature to Robustly Predict the Prognosis, Immune Microenvironment, and Immuno-therapy Efficiency in Patients with Clear Cell Renal Cell Carcinoma. PeerJ, 10, E14506. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, Y., Swanda, R.V., et al. (2021) mTORC1 Couples Cyst(e)ine Availability with GPX4 Protein Synthesis and Ferroptosis Regulation. Nature Communications, 12, Article No. 1589. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bao, Z., Hua, L., Ye, Y., et al. (2021) MEF2C Silencing Downregulates NF2 and E-Cadherin and Enhances Erastin-Induced Ferroptosis in Meningioma. Neuro-Oncology, 23, 2014-2027. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, H., Zandkarimi, F., Zhang, Y., et al. (2020) Ener-gy-Stress-Mediated AMPK Activation Inhibits Ferroptosis. Nature Cell Biology, 22, 225-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Miotto, G., Rossetto, M., Di Paolo, M.L., et al. (2019) Insight in-to the Mechanism of Ferroptosis Inhibition by Ferrostatin-1. Redox Biology, 28, Article ID: 101328. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Miao, Y., Chen, Y., Xue, F., et al. (2022) Contribution of Fer-roptosis and GPX4’s Dual Functions to Osteoarthritis Progression. EBioMedicine, 76, Article ID: 103847. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Simão, M., Gavaia, P.J., Camacho, A., et al. (2019) Intracellular Iron Uptake Is Favored in Hfe-KO Mouse Primary Chondrocytes Mimicking an Osteoarthritis-Related Phenotype. Bio-Factors, 45, 583-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Parelman, M., Stoecker, B., Baker, A., et al. (2006) Iron Restriction Nega-tively Affects Bone in Female Rats and Mineralization of hFOB Osteoblast Cells. Experimental Biology and Medicine, 231, 378-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, S., Dubin, A.E., Zhang, Y., et al. (2021) A Role of PIEZO1 in Iron Metabolism in Mice and Humans. Cell, 184, 969-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Aron, A.T., Loehr, M.O., Bogena, J., et al. (2016) An Endoperox-ide Reactivity-Based FRET Probe for Ratiometric Fluorescence Imaging of Labile Iron Pools in Living Cells. Journal of the American Chemical Society, 138, 14338-14346. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, X., et al. (2015) Iron Overload Increases Osteoclastogenesis and Aggravates the Effects of Ovariectomy on Bone Mass. Journal of Endocrinology, 226, 121-134. [Google Scholar] [CrossRef]
|
|
[28]
|
Ge, W., Jie, J., Yao, J., et al. (2022) Advanced Glycation end Products Promote Osteoporosis by Inducing Ferroptosis in Osteoblasts. Molecular Medicine Reports, 25, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Tsay, J., Yang, Z., Ross, F.P., et al. (2010) Bone Loss Caused by Iron Overload in a Murine Model: Importance of Oxidative Stress. Blood, 116, 2582-2589. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ni, S., Yuan, Y., Qian, Z., et al. (2021) Hypoxia Inhibits RANKL-Induced Ferritinophagy and Protects Osteoclasts from Ferroptosis. Free Radical Biology and Medicine, 169, 271-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qu, X., Sun, Z., Wang, Y. and Ong, H. (2021) Zoledronic Acid Promotes Osteoclasts Ferroptosis by Inhibiting FBXO9-Mediated p53 Ubiquitination and Degradation. PeerJ, 9, e12510. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yazar, M., Sarban, S., Kocyigit, A. and Isikan, U.E. (2005) Synovial Fluid and Plasma Selenium, Copper, Zinc, and Iron Concentrations in Patients with Rheumatoid Arthri-tis and Osteoarthritis. Biological Trace Element Research, 106, 123-132. [Google Scholar] [CrossRef]
|
|
[33]
|
Jing, X., Du, T., Li, T., et al. (2021) The Detrimental Effect of Iron on OA Chondrocytes: Importance of Pro-Inflammatory Cytokines Induced Iron Influx and Oxidative Stress. Journal of Cellular and Molecular Medicine, 25, 5671-5680. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dixon, S.J., Patel, D.N., Welsch, M., et al. (2014) Pharmacological Inhibition of Cystine-Glutamate Exchange Induces Endoplasmic Retic-ulum Stress and Ferroptosis. eLife, 3, e02523. [Google Scholar] [CrossRef]
|
|
[35]
|
Neitemeier, S., Jelinek, A., Laino, V., et al. (2017) BID Links Ferroptosis to Mitochondrial Cell Death Pathways. Redox Biology, 12, 558-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gao, M., Yi, J., Zhu, J., et al. (2018) Role of Mitochondria in Ferroptosis. Molecular Cell, 73, 354-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jing, X., Lin, J., Du, T., et al. (2021) Iron Overload Is Associat-ed with Accelerated Progression of Osteoarthritis: The Role of DMT1 Mediated Iron Homeostasis. Frontiers in Cell and Developmental Biology, 8, Article ID: 594509. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Knäuper, V., Cowell, S., Smith, B., et al. (1997) The Role of the C-terminal Domain of Human Collagenase-3 (MMP-13) in the Activation of Procollagenase-3, Substrate Specificity, and Tissue Inhibitor of Metalloproteinase Interaction. Journal of Biological Chemistry, 272, 7608-7616. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lin, Z., Song, J., Gao, Y., et al. (2022) Hypoxia-Induced HIF-1α/lncRNA-PMAN Inhibits Ferroptosis by Promoting the Cytoplasmic Translocation of ELAVL1 in Peritoneal Dissemination from Gastric Cancer. Redox Biology, 52, Article ID: 102312. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Torretta, S., Scagliola, A., Ricci, L., et al. (2020) D-Mannose Suppresses Macrophage IL-1β Production. Nature Communications, 11, Article No. 6343. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhou, X., Zheng, Y., Sun, W., et al. (2021) D-Mannose Allevi-ates Osteoarthritis Progression by Inhibiting Chondrocyte Ferroptosis in a HIF-2α-Dependent Manner. Cell Prolifera-tion, 54, e13134. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sheng, B., Li, X., Zhou, L., et al. (2020) Targeting miR-10a-5p/IL-6R Axis for Reducing IL-6-Induced Cartilage Cell Ferroptosis. Experimental and Molecular Pathology, 118, Article ID: 104570. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, P., Feng, Y., Li, H., et al. (2020) Ferrostatin-1 Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting Ferroptosis. Cellular & Molecular Biology Letters, 25, Ar-ticle No. 10. [Google Scholar] [CrossRef] [PubMed]
|