|
[1]
|
Dvoˇr´ak, Z. and Postle, L. (2018) Correspondence Coloring and Its Application to List-Coloring Planar Graphs without Cycles of Lengths 4 to 8. Journal of Combinatorial Theory, 129, 35-54. [Google Scholar] [CrossRef]
|
|
[2]
|
Wang, W. and Lih, K. (2002) Choosability and Edge Choosability of Planar Graphs without Five Cycles. Applied Mathematics Letters, 15, 561-565. [Google Scholar] [CrossRef]
|
|
[3]
|
Fijavˇz, G., Juvan, M., Mohar, B., Sˇkrekovsi, R. (2002) Planar Graphs without Cycles of Specific Lengths. European Journal of Combinatorics, 23, 377-388. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, R., Li, X., Nakprasit, K., Sittitrai, P. and Yu, G. (2020) DP-4-Colorability of Planar Graphs without Adjacent Cycles of Given Length. Discrete Applied Mathematics, 277, 245- 251. [Google Scholar] [CrossRef]
|
|
[5]
|
Sittitrai, P. and Nakprasit, K. (2021) Sufficient Conditions for Planar Graphs without 4-Cycles and 5-Cycles to Be 2-Degenerate. Discrete Mathematics, 344, Article 112564. [Google Scholar] [CrossRef]
|
|
[6]
|
Jumnongnit, P. and Pimpasalee, W. (2021) Planar Graphs without Specific Cycles Are 2- Degenerate. Discrete Mathematics, 344, Article 112488. [Google Scholar] [CrossRef]
|
|
[7]
|
Bernshteyn, A. and Lee, E. (2023) Weak Degeneracy of Graphs. Journal of Graph Theory, 103, 607-634. [Google Scholar] [CrossRef]
|
|
[8]
|
Han, M., Wang, T., Wu, J., Zhou, H. and Zhu, X. (2023) Weak Degeneracy of Planar Graphs and Locally Planar Graphs. arXiv:2303.07901v1.
|
|
[9]
|
Wang, T. (2023) Weak Degeneracy of Planar Graphs without 4- and 6-Cycles. Discrete Applied Mathematics, 334, 110-118. [Google Scholar] [CrossRef]
|