|
[1]
|
Tanaka, H., Imasato, M., Yamazaki, Y., et al. (2018) Claudin-3 Regulates Bile Canalicular Paracellular Barrier and Cholesterol Gallstone Core Formation in Mice. Journal of Hepatology, 69, 1308-1316. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gurusamy, K.S. and Davidson, B.R. (2014) Gallstones. The BMJ, 348, g2669. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
O’connell, K. and Brasel, K. (2014) Bile Metabolism and Lithogenesis. Surgical Clinics of North America, 94, 361-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sun, H., Warren, J., Yip, J., et al. (2022) Factors Influencing Gallstone Formation: A Review of the Literature. Biomolecules, 12, Article 550. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Maki, T. (1966) Pathogenesis of Calcium Bilirubinate Gallstone: Role of E. coli, β-Glucuronidase and Coagulation by Inorganic Ions, Polyelectrolytes and Agitation. Annals of Surgery, 164, 90-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Donato, G., Occhipinti, P., Correale, L., et al. (2021) A Prospective Study on Quality in Endoscopic Retrograde Cholangiopancreatography (ERCP): Trend in Italy from the REQUEST Study. Endoscopy International Open, 9, E1563-E1571. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, Y., Qi, M., Qin, C. and Hong, J.B. (2018) Role of the Biliary Microbiome in Gallstone Disease. Expert Review of Gastroenterology & Hepatology, 12, 1193-1205. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Han, J., Wu, S., Fan, Y., Tian, Y. and Kong, J. (2021) Biliary Microbiota in Choledocholithiasis and Correlation with Duodenal Microbiota. Frontiers in Cellular and Infection Microbiology, 11, Article 625589. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ramana Ramya, J., Thanigai Arul, K., Epple, M., et al. (2017) Chemical and Structural Analysis of Gallstones from the Indian Subcontinent. Materials Science and Engineering: C, 78, 878-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Binda, C., Gibiino, G., Coluccio, C., et al. (2022) Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms, 10, Article 312. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kim, B., Park, J.S., Bae, J. and Hwang, N. (2021) Bile Microbiota in Patients with Pigment Common Bile Duct Stones. Journal of Korean Medical Science, 36, e94. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liang, T., Su, W., Zhang, Q., et al. (2016) Roles of Sphincter of Oddi Laxity in Bile Duct Microenvironment in Patients with Cholangiolithiasis: From the Perspective of the Microbiome and Metabolome. Journal of the American College of Surgeons, 222, 269-280e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ye, F., Shen, H., Li, Z., et al. (2016) Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLOS ONE, 11, e0150519. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Leung, J.W., Liu, Y.L., Leung, P.S., et al. (2001) Expression of Bacterial β-Glucuronidase in Human Bile: An in Vitro Study. Gastrointestinal Endoscopy, 54, 346-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nakano, T., Yanagisawa, J. and Nakayama, F. (1988) Phospholipase Activity in Human Bile. Hepatology, 8, 1560-1564. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Paumgartner, G. and Sauerbruch, T. (1991) Gallstones: Pathogenesis. Lancet, 338, 1117-1121. [Google Scholar] [CrossRef]
|
|
[17]
|
Halpern, Z., Goldman, G., Peled, Y., et al. (1992) Free Fatty Acids Have Nucleating Effects in Model Biles. Liver, 12, 107-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Stewart, L., Ponce, R., Oesterle, A.L., Griffiss, J.M. and Way, L.W. (2000) Pigment Gallstone Pathogenesis: Slime Production by Biliary Bacteria Is More Important than β-Glucuronidase Production. Journal of Gastrointestinal Surgery, 4, 547-553. [Google Scholar] [CrossRef]
|
|
[19]
|
Kose, S.H., Grice, K., Orsi, W.D., Ballal, M. and Coolen, M.J.L. (2018) Metagenomics of Pigmented and Cholesterol Gallstones: The Putative Role of Bacteria. Scientific Reports, 8, Article No. 11218. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, X., Yao, C., Kong, J., et al. (2021) Molecular Mechanism Underlying miR-130b-Sp1 Transcriptional Regulation in LPS-Induced Upregulation of MUC5AC in the Bile Duct Epithelium. Molecular Medicine Reports, 23, Article No. 106. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yao, D., Dong, Q., Tian, Y., et al. (2018) Lipopolysaccharide Stimulates Endogenous β-Glucuronidase via PKC/NF-κB/c-myc Signaling Cascade: A Possible Factor in Hepatolithiasis Formation. Molecular and Cellular Biochemistry, 444, 93-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Stewart, L., Grifiss, J.M., Jarvis, G.A. and Way, L.W. (2006) Biliary Bacterial Factors Determine the Path of Gallstone Formation. The American Journal of Surgery, 192, 598-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Schneider, J., De Waha, P., Hapfelmeier, A., et al. (2014) Risk Factors for Increased Antimicrobial Resistance: A Retrospective Analysis of 309 Acute Cholangitis Episodes. Journal of Antimicrobial Chemotherapy, 69, 519-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, T., Yang, Y., Su, H., et al. (2022) Recent Developments in Antibacterial or Antibiofilm Compound Coating for Biliary Stents. Colloids and Surfaces B: Biointerfaces, 219, Article ID: 112837. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chang, C.M., Chiu, T.H.T., Chang, C.C., et al. (2019) Plant-Based Diet, Cholesterol, and Risk of Gallstone Disease: A Prospective Study. Nutrients, 11, Article 335. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhuang, W., Xiao, L., Zuo, F., et al. (2002) [The Effects of Activities of Ca(2+)-ATPase and Na(+)-K(+)-ATPase in Plasma Membranes of Hepatocytes on the Formation of Calcium Bilirubinate Gallstone]. Journal of West China University of Medical Sciences, 33, 262-264.
|
|
[27]
|
Zimmer, V. (2022) Direct Cholangioscopy Using a Standard-Size Gastroscope to Guide Mechanical Lithotripsy after Failed ERCP-Based Basket Capture. Gastroenterología y Hepatología, 45, 559-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Bures, C., Seika, P., Veltzke-Schliecker, W., et al. (2019) Intragastric Single-Port Surgery (IGS) Accesses the Gastric remnant and Allows ERCP for Common Bile Duct Stones after RYGB: A Simple Solution for a Difficult Problem. Surgery for Obesity and Related Diseases, 15, 1326-1331. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yamabe, A., Irisawa, A., Kunogi, Y., et al. (2021) Development of Biliary Stent Applying the Antibacterial Activity of Silver: A Literature Review. Bio-Medical Materials and Engineering, 32, 63-71. [Google Scholar] [CrossRef]
|
|
[30]
|
Yu, C.J., Yeh, H.J., Chang, C.C., et al. (2021) Lightweight Deep Neural Networks for Cholelithiasis and Cholecystitis Detection by Point-of-Care Ultrasound. Computer Methods and Programs in Biomedicine, 211, Article ID: 106382. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Maayan, M., Mani, K.A., Yaakov, N., et al. (2021) Fluorine-Free Superhydrophobic Coating with Antibiofilm Properties Based on Pickering Emulsion Templating. ACS Applied Materials & Interfaces, 13, 37693-37703. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kreve, S. and Reis, A.C.D. (2021) Bacterial Adhesion to Biomaterials: What Regulates This Attachment? A Review. Japanese Dental Science Review, 57, 85-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lübbert, C., Wendt, K., Feisthammel, J., et al. (2016) Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study. PLOS ONE, 11, e0155479. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, E., Zhao, X., Hu, J., et al. (2021) Antibacterial Metals and Alloys for Potential Biomedical Implants. Bioactive Materials, 6, 2569-2612. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shi, A., Zhu, C., Fu, S., et al. (2020) What Controls the Antibacterial Activity of Ti-Ag Alloy, Ag Ion or Ti2Ag Particles? Materials Science and Engineering: C, 109, Article ID: 110548. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
An, X., Liu, L., Schaefer, M., et al. (2021) α-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer. Cancers, 13, Article 4770. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Smith, J.N., Thomas, D.G., Jolley, H., et al. (2018) All That Is Silver Is Not Toxic: Silver Ion and Particle Kinetics Reveals the Role of Silver Ion Aging and Dosimetry on the Toxicity of Silver Nanoparticles. Particle and Fibre Toxicology, 15, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Leung, J.W., Lau, G.T., Sung, J.J. and Costerton, J.W. (1992) Decreased Bacterial Adherence to Silver-Coated Stent Material: An in Vitro Study. Gastrointestinal Endoscopy, 38, 338-340. [Google Scholar] [CrossRef]
|
|
[39]
|
Luo, H., Yin, X.Q., Tan, P.F., et al. (2021) Polymeric Antibacterial Materials: Design, Platforms and Applications. Journal of Materials Chemistry B, 9, 2802-2815. [Google Scholar] [CrossRef]
|
|
[40]
|
Wen, W., Ma, L.M., He, W., et al. (2016) Silver-Nanoparticle-Coated Biliary Stent Inhibits Bacterial Adhesion in Bacterial Cholangitis in Swine. Hepatobiliary & Pancreatic Diseases International, 15, 87-92. [Google Scholar] [CrossRef]
|
|
[41]
|
Park, W., Kim, K.Y., Kang, J.M., et al. (2020) Metallic Stent Mesh Coated with Silver Nanoparticles Suppresses Stent-Induced Tissue Hyperplasia and Biliary Sludge in the Rabbit Extrahepatic Bile Duct. Pharmaceutics, 12, Article 563. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Park, Y., Won, D.S., Bae, G.H., et al. (2022) Silver Nanofunctionalized Stent after Radiofrequency Ablation Suppresses Tissue Hyperplasia and Bacterial Growth. Pharmaceutics, 14, Article 412. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Padnya, P.L., Terenteva, O.S., Akhmedov, A.A., et al. (2021) Thiacalixarene Based Quaternary Ammonium Salts as Promising Antibacterial Agents. Bioorganic & Medicinal Chemistry, 29, Article ID: 115905. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kliewer, S., Wicha, S.G., Bröker, A., et al. (2020) Contact-Active Antibacterial Polyethylene Foils via Atmospheric Air Plasma Induced Polymerisation of Quaternary Ammonium Salts. Colloids and Surfaces B: Biointerfaces, 186, Article ID: 110679. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ren, L., Ping, M. and Zhang, X. (2020) Membrane Biofouling Control by Surface Modification of Quaternary Ammonium Compound Using Atom-Transfer Radical-Polymerization Method with Silica Nanoparticle as Interlayer. Membranes, 10, Article 417. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Obermeier, A., Würstle, S., Tübel, J., et al. (2019) Novel Antimicrobial Coatings Based on Polylactide for Plastic Biliary Stents to Prevent Post-Endoscopic Retrograde Cholangiography Cholangitis. Journal of Antimicrobial Chemotherap, 74, 1911-1920. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, H., Qiu, T., Bai, Y., et al. (2021) Enhanced Antibacterial Activity of Lysozyme Loaded Quaternary Ammonium Chitosan Nanoparticles Functionalized with Cellulose Nanocrystals. International Journal of Biological Macromolecules, 191, 71-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Peng, Y., Zhou, H., Wu, Y., et al. (2022) A New Strategy to Construct Cellulose-Chitosan Films Supporting Ag/Ag2O/ZnO Heterostructures for High Photocatalytic and Antibacterial Performance. Journal of Colloid and Interface Science, 609, 188-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wei, X., Cai, J., Wang, C., et al. (2022) Quaternized Chitosan/Cellulose Composites as Enhanced Hemostatic and Antibacterial Sponges for Wound Healing. International Journal of Biological Macromolecules, 210, 271-281. [Google Scholar] [CrossRef] [PubMed]
|