|
[1]
|
Bhagat, A. and Kleinerman, E.S. (2020) Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Advances in Experimental Medicine and Biology, 1257, 181-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Radulescu, L.M., Radulescu, D., Ciuleanu, T.E., et al. (2021) Cardiotoxicity Associated with Chemotherapy Used in Gastrointestinal Tumours. Medicina, 57, Article 806. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bansal, N., Amdani, S., Lipshultz, E.R., et al. (2017) Chemothera-py-Induced Cardiotoxicity in Children. Expert Opinion on Drug Metabolism & Toxicology, 13, 817-832. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ray, P.D., Huang, B.W. and Tsuji, Y. (2012) Reactive Ox-ygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jakubczyk, K., Dec, K., Kałduńska, J., et al. (2020) Reactive Oxygen Species—Sources, Functions, Oxidative Damage. Polski Merkuriusz Lekarski, 48, 124-127.
|
|
[6]
|
Sies, H. and Jones, D.P. (2020) Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nature Reviews Molecular Cell Biology, 21, 363-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 94, 909-950. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Angsutararux, P., Luanpitpong, S. and Is-saragrisil, S. (2015) Chemotherapy-Induced Cardiotoxicity: Overview of the Roles of Oxidative Stress. Oxidative Medi-cine and Cellular Longevity, 2015, Article ID: 795602. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Incalza, M.A., D’oria, R., Natalicchio, A., et al. (2018) Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascular Pharmacology, 100, 1-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ambrosio, G., Zweier, J.L., Duilio, C., et al. (1993) Evidence That Mitochondrial Respiration Is a Source of Potentially Toxic Oxygen Free Radicals in Intact Rabbit Hearts Subjected to Is-chemia and Reflow. Journal of Biological Chemistry, 268, 18532-18541. [Google Scholar] [CrossRef]
|
|
[11]
|
Paradies, G., Paradies, V., Ruggiero, F.M., et al. (2014) Oxidative Stress, Cardiolipin and Mitochondrial Dysfunction in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 14205-14218. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Medzhitov, R. (2010) Inflammation 2010: New Adventures of an Old Flame. Cell, 140, 771-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lazzerini, P.E., Capecchi, P.L. and Laghi-Pasini, F. (2015) Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Frontiers in Cardiovascular Medicine, 2, Article 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lazzerini, P.E., Laghi-Pasini, F., Boutjdir, M., et al. (2019) Cardio-immunology of Arrhythmias: THE Role of autoimmune and Inflammatory Cardiac Channelopathies. Nature Reviews Immunology, 19, 63-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Aromolaran, A.S., Srivastava, U., Alí, A., et al. (2018) Interleu-kin-6 Inhibition of hERG Underlies Risk for Acquired Long QT in Cardiac and Systemic Inflammation. PLOS ONE, 13, e0208321. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Alí, A., Boutjdir, M. and Aromolaran, A.S. (2018) Cardiolipo-toxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Frontiers in Physiology, 9, Arti-cle 1866. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Villegas, S., Villarreal, F.J. and Dillmann, W.H. (2000) Leukemia Inhibitory Factor and Interleukin-6 Downregulate Sarcoplasmic Reticulum Ca2+ ATPase (SERCA2) in Cardiac Myo-cytes. Basic Research in Cardiology, 95, 47-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tanaka, T., Kanda, T., Takahashi, T., et al. (2004) Interleu-kin-6-Induced Reciprocal Expression of SERCA and Natriuretic Peptides mRNA in Cultured Rat Ventricular Myocytes. Journal of International Medical Research, 32, 57-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fontes, J.A., Rose, N.R. and Čiháková, D. (2015) The Varying Faces of IL-6: From Cardiac Protection to Cardiac Failure. Cyto-kine, 74, 62-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Q., Qin, M., Tan, Q., et al. (2020) Mi-croRNA-129-1-3p Protects Cardiomyocytes from Pirarubicin-Induced Apoptosis by Down-Regulating the GRIN2D-Mediated Ca(2+) Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 2260-2271. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cappetta, D., Esposito, G., Coppini, R., et al. (2017) Effects of Ranolazine in a Model of Doxorubicin-Induced Left Ventricle Diastolic Dysfunction. British Journal of Pharmacology, 174, 3696-3712. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sutanto, H., Lyon, A., Lumens, J., et al. (2020) Cardio-myocyte Calcium Handling in Health and Disease: Insights from in vitro and in silico Studies. Progress in Biophysics and Molecular Biology, 157, 54-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tantawy, A.A., Adly, A.A., Ismail, E.A., et al. (2015) En-dothelial Nitric Oxide Synthase Gene Intron 4 VNTR Polymorphism in Sickle Cell Disease: Relation to Vasculopathy and Disease Severity. Pediatric Blood & Cancer, 62, 389-394. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shashar, M., Chernichovski, T., Pasvolsky, O., et al. (2017) Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway. Kidney and Blood Pressure Research, 42, 201-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mamoshina, P., Rodriguez, B. and Bueno-Orovio, A. (2021) Toward a Broader View of Mechanisms of Drug Cardiotoxicity. Cell Reports Medicine, 2, Article ID: 100216. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Taimeh, Z., Loughran, J., Birks, E.J., et al. (2013) Vascular En-dothelial Growth Factor in Heart Failure. Nature Reviews Cardiology, 10, 519-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Izzedine, H., Ederhy, S., Goldwasser, F., et al. (2009) Management of Hypertension in Angiogenesis Inhibitor-Treated Patients. Annals of Oncology, 20, 807-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pondé, N.F., Lambertini, M. and De Azambuja, E. (2016) Twenty Years of Anti-HER2 Therapy-Associated Cardiotoxicity. ESMO Open, 1, e000073. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Goodwill, A.G., Dick, G.M., Kiel, A.M., et al. (2017) Regu-lation of Coronary Blood Flow. Compr Physiol Comprehensive Physiology, 7, 321-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Niederer, S.A., Campbell, K.S. and Campbell, S.G. (2019) A Short History of the Development of Mathematical Models of Cardiac mechanics. Journal of Molecular and Cellular Cardiol-ogy, 127, 11-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Saleh, M. and Ambrose, J.A. (2018) Understanding Myocardial Infarction. F1000 Research, 7, Article 1378. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Senst, B., Kumar, A. and Diaz, R.R. (2022) Cardiac Surgery. StatPearls Publishing, Treasure Island (FL).
|
|
[33]
|
Herrmann, J., Yang, E.H., Iliescu, C.A., et al. (2016) Vascular Toxic-ities of Cancer Therapies: The Old and the New—An Evolving Avenue. Circulation, 133, 1272-1289. [Google Scholar] [CrossRef]
|
|
[34]
|
Venkatesh, P. and Kasi, A. Anthracyclines. StatPearls Publishing, Treasure Island (FL).
|
|
[35]
|
Martins-Teixeira, M.B. and Carvalho, I. (2020) Antitumour Anthracy-clines: Progress and Perspectives. ChemMedChem, 15, 933-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Volkova, M. and Russell, R. (2011) Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Current Cardiology Reviews, 7, 214-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cardinale, D., Colombo, A., Bacchiani, G., et al. (2015) Early Detection of Anthracycline Cardiotoxicity and Improvement with Heart Failure Therapy. Circulation, 131, 1981-1988. [Google Scholar] [CrossRef]
|
|
[38]
|
Ichikawa Y., Ghanefar, M., Bayeva, M., et al. (2014) Cardiotoxicity of Doxorubicin Is Mediated through Mitochondrial Iron Accumulation. Journal of Clinical Investigation, 124, 617-630. [Google Scholar] [CrossRef]
|
|
[39]
|
Octavia, Y., Tocchetti, C.G., Gabrielson, K.L., et al. (2012) Doxorubicin-Induced Cardiomyopathy: from Molecular Mechanisms to Therapeutic Strategies. Journal of Molecular and Cellular Cardiology, 52, 1213-1225. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, S., Meng, X.F. and Zhang, C. (2013) Role of NADPH Oxidase-Mediated Reactive Oxygen Species in Podocyte Injury. BioMed Research International, 2013, Article ID: 839761. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lubieniecka, J.M., Graham, J., Heffner, D., et al. (2013) A Discovery Study of Daunorubicin Induced Cardiotoxicity in a Sample of Acute Myeloid Leukemia Patients Prioritizes P450 Oxidoreductase Polymorphisms as a Potential Risk Factor. Frontiers in Genetics, 4, Article 231. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pantazi, D. and Tselepis, A.D. (2022) Cardiovascular Toxic Effects of Antitumor Agents: Pathogenetic Mechanisms. Thrombosis Research, 213, S95-S102. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Paul, M.K. and Mukhopadhyay, A.K. (2004) Tyrosine Ki-nase—Role and Significance in Cancer. International Journal of Medical Sciences, 1, 101-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Schramm, A., De Gregorio, N., Widschwendter, P., et al. (2015) Targeted Therapies in HER2-Positive Breast Cancer—A Systematic Review. Breast Care, 10, 173-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Barok, M., Joensuu, H. and Isola, J. (2014) Trastuzumab Emtansine: Mechanisms of Action and Drug Resistance. Breast Cancer Research, 16, Article No. 209. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gajria, D. and Chandarlapaty, S. (2011) HER2-Amplified Breast Cancer: Mechanisms of Trastuzumab Resistance and Novel Targeted Therapies. Expert Review of Anticancer Therapy, 11, 263-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, Z., Wang, W., Wang, X., et al. (2021) Cardiotoxicity of Epidermal Growth Factor Receptor 2-Targeted Drugs for Breast Cancer. Frontiers in Pharmacology, 12, Article ID: 741451. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Nunes, A.T. and Annunziata, C.M. (2017) Proteasome Inhibitors: Structure and Function. Seminars in Oncology, 44, 377-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wu, P., Oren, O., Gertz, M.A., et al. (2020) Proteasome In-hibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Current Oncology Reports, 22, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cole, D.C. and Frishman, W.H. (2018) Cardiovascular Compli-cations of Proteasome Inhibitors Used in Multiple Myeloma. Cardiology in Review, 26, 122-129. [Google Scholar] [CrossRef]
|
|
[51]
|
Bodai, B.I. and Tuso, P. (2015) Breast Cancer Survivor-ship: A Comprehensive Review of Long-Term Medical Issues and Lifestyle Recommendations. The Permanente Jour-nal, 19, 48-79. [Google Scholar] [CrossRef]
|
|
[52]
|
Hershman, D.L., Mcbride, R.B., Eisenberger, A., et al. (2008) Doxorubicin, Cardiac Risk Factors, and Cardiac Toxicity in Elderly Patients with Diffuse B-Cell Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology, 26, 3159-3165. [Google Scholar] [CrossRef]
|
|
[53]
|
Hequet, O., Le, Q.H., Moullet, I., et al. (2004) Subclinical Late Cardiomyopathy after Doxorubicin Therapy for Lymphoma in Adults. Journal of Clinical Oncology, 22, 1864-1871. [Google Scholar] [CrossRef]
|