[1]
|
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
|
[2]
|
Park, N.G. and Zhu, K. (2020) Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules. Nature Reviews Materials, 5, 333-350. https://doi.org/10.1038/s41578-019-0176-2
|
[3]
|
Li, C., Wang, X., Bi, E., Jiang, F., Park, S. M., Li, Y., Chen, L., Wang, Z., Zeng, L. and Chen, H. (2023) Rational Design of Lewis Base Molecules for Stable and Efficient Inverted Perovskite Solar Cells. Science, 379, 690-694.
https://doi.org/10.1126/science.ade3970
|
[4]
|
National Renewable Energy Laboratory (2023) Best Research-Cell Efficiency Chart.
https://www.nrel.gov/pv/cell-efficiency.html
|
[5]
|
Boyd, C.C., Cheacharoen, R., Leijtens, T. and McGehee, M.D. (2018) Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 119, 3418-3451.
https://doi.org/10.1021/acs.chemrev.8b00336
|
[6]
|
Wang, R., Mujahid, M., Duan, Y., Wang, Z.K., Xue, J. and Yang, Y. (2019) A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 29, Article ID: 1808843. https://doi.org/10.1002/adfm.201808843
|
[7]
|
Yang, S., Duan, Y., Liu, Z. and Liu, S. (2022) Recent Advances in CsPbX3 Perovskite Solar Cells: Focus on Crystallization Characteristics and Controlling Strategies. Advanced Energy Materials, 13, Article ID: 2201733.
https://doi.org/10.1002/aenm.202201733
|
[8]
|
Liu, D., Shao, Z., Li, C., Pang, S., Yan, Y. and Cui, G. (2021) Structural Properties and Stability of Inorganic CsPbI3 Perovskites. Small Structures, 2, Article ID: 2000089. https://doi.org/10.1002/sstr.202000089
|
[9]
|
Zhou, Q., Duan, J., Du, J., Guo, Q., Zhang, Q., Yang, X., Duan, Y. and Tang, Q. (2021) Tailored Lattice “Tape” to Confine Tensile Interface for 11.08%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cell with an Ultrahigh Voltage of 1.702 V. Advanced Science, 8, Article ID: 2101418. https://doi.org/10.1002/advs.202101418
|
[10]
|
Song, J., Xie, H., Lim, E.L., Hagfeldt, A. and Bi, D. (2022) Progress and Perspective on Inorganic CsPbI2Br Perovskite Solar Cells. Advanced Energy Materials, 12, Article ID: 2201854. https://doi.org/10.1002/aenm.202201854
|
[11]
|
Ding, Y., Guo, Q., Geng, Y., Dai, Z., Wang, Z., Chen, Z., Guo, Q., Zheng, Z., Li, Y. and Zhou, E. (2022) A Low-Cost Hole Transport Layer Enables CsPbI2Br Single-Junction and Tandem Perovskite Solar Cells with Record Efficiencies of 17.8% and 21.4%. Nano Today, 46, Article ID: 101586. https://doi.org/10.1016/j.nantod.2022.101586
|
[12]
|
汪志鹏, 李瑞, 张梅, 郭敏, SnO2基钙钛矿太阳能电池界面调控与性能优化[J]. 工程科学学报, 2023, 45(2): 263-277.
|
[13]
|
Chen, S., Dai, X., Xu, S., Jiao, H., Zhao, L. and Huang, J. (2021) Stabilizing Perovskite-Substrate Interfaces for High-Performance Perovskite Modules. Science, 373, 902-907. https://doi.org/10.1126/science.abi6323
|
[14]
|
Min, H., Lee, D.Y., Kim, J., Kim, G., Lee, K.S., Kim, J., Paik, M.J., Kim, Y.K., Kim, K.S. and Kim, M.G. (2021) Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature, 598, 444-450.
https://doi.org/10.1038/s41586-021-03964-8
|
[15]
|
Hu, Y., Xu, Z., Wang, Z., Zhou, Y., Song, W., Gao, Y., Sun, G., Sun, T., Zhang, S. and Tang, Y. (2023) Multifunctional Anthraquinone-Sulfonic Potassium Salts Passivate the Buried Interface for Efficient and Stable Planar Perovskite Solar Cells. Physical Chemistry Chemical Physics, 25, 8403-8411. https://doi.org/10.1039/D3CP00514C
|
[16]
|
Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S. and Liu, S. (2018) High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis Using EDTA-Complexed SnO2. Nature Communications, 9, Article 3239. https://doi.org/10.1038/s41467-018-05760-x
|
[17]
|
Wang, P., Chen, B., Li, R., Wang, S., Ren, N., Li, Y., Mazumdar, S., Shi, B., Zhao, Y. and Zhang, X. (2021) Cobalt Chloride Hexahydrate Assisted in Reducing Energy Loss in Perovskite Solar Cells with Record Open-Circuit Voltage of 1.20 V. ACS Energy Letters, 6, 2121-2128. https://doi.org/10.1021/acsenergylett.1c00443
|
[18]
|
Jung, E.H., Chen, B., Bertens, K., Vafaie, M., Teale, S., Proppe, A., Hou, Y., Zhu, T., Zheng, C. and Sargent, E.H. (2020) Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells. ACS Energy Letters, 5, 2796-2801. https://doi.org/10.1021/acsenergylett.0c01566
|
[19]
|
Nam, J.K., Chai, S.U., Cha, W., Choi, Y.J., Kim, W., Jung, M.S., Kwon, J., Kim, D. and Park, J.H. (2017) Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. Nano Letters, 17, 2028-2033. https://doi.org/10.1021/acs.nanolett.7b00050
|
[20]
|
Zhao, X., Liu, T., Kaplan, A.B., Yao, C. and Loo, Y.L. (2020) Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. Nano Letters, 20, 8880-8889.
https://doi.org/10.1021/acs.nanolett.0c03914
|
[21]
|
Boehm, H. (1971) Acidic and Basic Properties of Hydroxylated Metal Oxide Surfaces. Discussions of the Faraday Society, 52, 264-275. https://doi.org/10.1039/df9715200264
|
[22]
|
Hu, Y., Cai, L., Xu, Z., Wang, Z., Zhou, Y., Sun, G., Sun, T., Qi, Y., Zhang, S. and Tang, Y. (2023) High-Efficiency CsPbI2Br Perovskite Solar Cells with over 83% Fill Factor by Synergistic Effects of a Multifunctional Additive. Inorganic Chemistry, 62, 5408-5414. https://doi.org/10.1021/acs.inorgchem.2c04316
|