|
[1]
|
Tandon, R., Keshavan, M.S. and Nasrallah, H.A. (2008) Schizophrenia, “Just the Facts” What We Know in 2008. 2. Ep-idemiology and Etiology. Schizophrenia Research, 102, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Insel, T.R. (2010) Rethinking Schizophrenia. Nature, 468, 187-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jongsma, H.E., Turner, C., Kirkbride, J.B., et al. (2019) Inter-national Incidence of Psychotic Disorders, 2002-17: A Systematic Review and Meta-Analysis. The Lancet Public Health, 4, e229-e244. [Google Scholar] [CrossRef]
|
|
[4]
|
陆林, 等. 沈渔邨精神病学[M]. 北京: 人民卫生出版社, 2018.
|
|
[5]
|
Marwahas, J. (2004) Schizophrenia and Employment—A Review. Social Psychiatry and Psychiatric Epide-miology, 38, 337-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chesney, E., Goodwin, G.M., Fazel, S., et al. (2014) Risks of All-Cause and Suicide Mortality in Mental Disorders: A Meta-Review. World Psychiatry, 13, 153-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
赵靖平. 中国精神分裂症防治指南[M]. 第二版. 北京: 中华医学电子音像出版社, 2015.
|
|
[8]
|
Cleynen, I., Engchuan, W., Hestand, M.S., et al. (2020) Genetic Contributors to Risk of Schizophrenia in the Presence of a 22q11.2 Deletion. Molecular Psychiatry, 26, 4496-4510.
|
|
[9]
|
Stilo, S.A. and Murray, R.M. (2019) Non-Genetic Factors in Schizophrenia. Current Psychiatry Reports, 21, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Joe, P., Petrilli, M., Malaspina, D. and Weissman, J. (2018) Zinc in Schizophrenia: A Meta-Analysis. General Hospital Psychiatry, 53, 19-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kambe, T., Tsuji, T., Hashimoto, A., et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiolog-ical Reviews, 95, 749-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Barnett, J.P., Blindauer, C.A., Kassaar, O., et al. (2013) Alloster-ic Modulation of Zinc Speciation by Fatty Acids. Biochimica et Biophysica Acta, 1830, 5456-5464. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
King, J.C. (2011) Zinc: An Essential But Elusive Nutrient. The American Journal of Clinical Nutrition, 94, 679S-684S. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Krebs, N.F. (2000) Overview of Zinc Absorption and Excretion in the Human Gastrointestinal Tract. The Journal of Nutrition, 130, 1374S-1377S. [Google Scholar] [CrossRef]
|
|
[15]
|
张波, 孙得发. 锌的生物学功能、吸收转运及最新研究进展[J]. 广东饲料, 2015, 24(12): 29-31.
|
|
[16]
|
Maares, M. and Haase, H. (2020) A Guide to Human Zinc Absorption: General Overview and Recent Advances of in Vitro Intestinal Models. Nutrients, 12, 762. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
World Health Organization (2013) Zinc Supplementation and Growth in Children: Biological, Behavioural and Contextual Rationale.
|
|
[18]
|
Smart, T.G., Hosie, A.M. and Miller, P.S. (2004) Zn2+ Ions: Modulators of Excitatory and Inhibitory Synaptic Activity. Neuroscientist, 10, 432-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Szewczyk, B. (2013) Zinc Homeostasis and Neurodegenerative Disorders. Frontiers in Aging Neuroscience, 5, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
(2000) Zinc and Health: Current Status and Future Directions. Pro-ceedings of a workshop. Bethesda, Maryland, USA. November 4-5, 1998. The Journal of Nutrition, 130, 1341S-1519S.
|
|
[21]
|
MacDonald, R.S. (2000) The Role of Zinc in Growth and Cell Proliferation. The Journal of Nutri-tion, 130, 1500S-1508S. [Google Scholar] [CrossRef]
|
|
[22]
|
Yoo, M.H., Kim, T.Y., Yoon, Y.H. and Koh, J.Y. (2016) Autism Phenotypes in ZnT3 Null Mice: Involvement of Zinc Dyshomeostasis, MMP-9 Activation and BDNF Upregulation. Scientific Reports, 6, Article No. 28548. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Grabrucker, S., Jannetti, L., Eckert, M., et al. (2014) Zinc Deficiency Dysregulates the Synaptic ProSAP/Shank Scaffold and Might Contribute to Autism Spectrum Disorders. Brain, 137, 137-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Nakamura, M., Miura, A., Nagahata, T., Shibata, Y., Okada, E. and Ojima, T. (2019) Low Zinc, Copper, and Manganese Intake Is Associated with Depression and Anxiety Symptoms in the Japanese Working Population: Findings from the Eating Habit and Well-Being Study. Nutrients, 11, Article No. 847. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kozlowski, H., Luczkowski, M., Remelli, M. and Valensin, D. (2012) Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coordina-tion Chemistry Reviews, 256, 2129-2141. [Google Scholar] [CrossRef]
|
|
[26]
|
Colvin, R.A., Holmes, W.R., Fontaine, C.P. and Maret, W. (2010) Cytosolic Zinc Buffering and Muffling: Their Role in Intracellular Zinc Homeostasis. Metallomics, 2, 306-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Colvin, R.A., Fontaine, C.P., Laskowski, M. and Thomas, D. (2003) Zn2+ Transporters and Zn2+ Homeostasis in Neurons. European Journal of Pharmacology, 479, 171-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hara, T., Takeda, T.A., Takagishi, T., Fukue, K., Kambe, T. and Fukada, T. (2017) Physiological Roles of Zinc Transporters: Molecular and Genetic Importance in Zinc Homeostasis. The Journal of Physiological Sciences, 67, 283-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cole, T.B., Wenzel, H.J., Kafer, K.E., Schwartzkroin, P.A. and Palmiter, R.D. (1999) Elimination of Zinc from Synaptic Vesicles in the Intact Mouse Brain by Disruption of the ZnT3 Gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 1716-1721. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fu, S., Cho, A.T., Spanswick, S.C. and Dyck, R.H. (2023) Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells, 12, Article No. 880. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Savitikadi, P., Palika, R., Pullakhandam, R., Reddy, G.B. and Reddy, S.S. (2023) Dietary Zinc Inadequacy Affects Neurotrophic Factors and Proteostasis in the Rat Brain. Nutrition Research, 116, 80-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Adamo, A.M., Liu, X., Mathieu, P., Nuttall, J.R., Supasai, S. and Oteiza, P.I. (2019) Early Developmental Marginal Zinc Deficiency Affects Neurogenesis Decreasing Neuronal Number and Altering Neuronal Specification in the Adult Rat Brain. Frontiers in Cellular Neuroscience, 13, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dvergsten, C.L., Fosmire, G.J., Ollerich, D.A. and Sandstead, H.H. (1983) Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. I. Impaired Acquisition of Granule Cells. Brain Research, 271, 217-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dvergsten, C.L., Fosmire, G.J., Ollerich, D.A. and Sandstead, H.H. (1984) Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. II. Impaired Mat-uration of Purkinje Cells. Brain Research, 318, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Dvergsten, C.L., Johnson, L.A. and Sandstead, H.H. (1984) Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. III. Impaired Dendritic Dif-ferentiation of Basket and Stellate Cells. Brain Research, 318, 21-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Saghazadeh, A., Mahmoudi, M., Shahrokhi, S., et al. (2020) Trace Elements in Schizophrenia: A Systematic Review and Meta-Analysis of 39 Studies (N = 5151 Participants). Nutri-tion Reviews, 78, 278-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Baj, J., Forma, A., Sitarz, E., et al. (2020) Beyond the Mind-Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. International Journal of Molecular Sciences, 21, Article No. 9566. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, X., Li, Y., Zhang, T., Yao, Y., Shen, C. and Xue, Y. (2018) As-sociation of Serum Trace Elements with Schizophrenia and Effects of Antipsychotic Treatment. Biological Trace Element Research, 181, 22-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tabata, K., Miyashita, M., Yamasaki, S., et al. (2022) Hair Zinc Levels and Psychosis Risk among Adolescents. Schizophrenia (Heidelb), 8, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lam, M., Chen, C.Y., Li, Z., et al. (2019) Comparative Genetic Architectures of Schizophrenia in East Asian and European Populations. Nature Genetics, 51, 1670-1678. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Koumura, A., Kakefuda, K., Honda, A., et al. (2009) Metallothi-onein-3 Deficient Mice Exhibit Abnormalities of Psychological Behaviors. Neuroscience Letters, 467, 11-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Thackray, S.E., McAllister, B.B. and Dyck, R.H. (2017) Behav-ioral Characterization of Female Zinc Transporter 3 (ZnT3) Knockout Mice. Behavioural Brain Research, 321, 36-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Najjar, S., Pahlajani, S., De Sanctis, V., Stern, J.N.H., Najjar, A. and Chong, D. (2017) Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schiz-ophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Frontiers in Psychiatry, 8, Ar-ticle No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
McCoy, T.H., Pellegrini, A.M. and Perlis, R.H. (2019) Using Phe-nome-Wide Association to Investigate the Function of a Schizophrenia Risk Locus at SLC39A8. Translational Psychia-try, 9, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, S., Ma, C., Li, Y., et al. (2022) The Schizophrenia-Associated Missense Variant rs13107325 Regulates Dendritic Spine Density. Translational Psychiatry, 12, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Huang, Y., Huang, J., Zhou, Q.X., et al. (2021) ZFP804A Mu-tant Mice Display Sex-Dependent Schizophrenia-Like Behaviors. Molecular Psychiatry, 26, 2514-2532. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jelen, L.A., Green, M.S., King, S., et al. (2022) Variants in the Zinc Transporter-3 Encoding Gene (SLC30A3) in Schizophrenia and Bipolar Disorder: Effects on Brain Glutamate—A Pilot Study. Frontiers in Psychiatry, 13, Article ID: 929306. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Petrilli, M.A., Kranz, T.M., Kleinhaus, K., et al. (2017) The Emerging Role for Zinc in Depression and Psychosis. Frontiers in Pharmacology, 8, Article No. 414. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Behrouzian, F., Nazarinasab, M., Sadegh, A.M., Abdi, L. and Sabzevarizadeh, M. (2022) Effects of Zinc Sulfate on Schizophrenia Symptoms in Patients Undergoing Atypical Antipsychotic Pharmacotherapy. Journal of Family Medicine and Primary Care, 11, 7795-7799. [Google Scholar] [CrossRef] [PubMed]
|