|
[1]
|
Quaglio, A.E.V., Grillo, T.G., Oliveira, E.C.S.D., et al. (2022) Gut Microbiota, Inflammatory Bowel Disease and Colo-rectal Cancer. World Journal of Gastroenterology, 28, 4053-4060. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Marchesi, J.R., Adams, D.H., Fava, F., et al. (2016) The Gut Mi-crobiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Can-cer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yachida, S., Mizutani, S., Shiroma, H., et al. (2019) Meta-genomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Can-cer. Nature Medicine, 25, 968-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, J., Zhu, Y., Yang, L., et al. (2022) Effect of Gut Microbiota in the Colorectal Cancer and Potential Target Therapy. Discover Oncology, 13, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
De Vos, W.M., Tilg, H., Van Hul, M., et al. (2022) Gut Micro-biome and Health: Mechanistic Insights. Gut, 71, 1020-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Henne, K., Schilling, H., Stoneking, M., et al. (2018) Sex-Specific Differences in the Occurrence of Fusobacterium nucleatum Subspecies and Fusobacterium periodonticum in the Oral Cavity. Oncotarget, 9, 20631-20639. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kostic, A.D., Gevers, D., Pedamallu, C.S., et al. (2012) Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Research, 22, 292-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Casasanta, M.A., Yoo, C.C., Udayasuryan, B., et al. (2020) Fusobac-terium nucleatum Host-Cell Binding and Invasion Induces IL-8 and CXCL1 Secretion That Drives Colorectal Cancer Cell Migration. Science Signaling, 13, eaba9157.
|
|
[10]
|
Beaugerie, L., Svrcek, M., Seksik, P., et al. (2013) Risk of Colo-rectal High-Grade Dysplasia and Cancer in a Prospective Observational Cohort of Patients with Inflammatory Bowel Disease. Gastroenterology, 145, 166-175.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kostic, A.D., Chun, E., Robertson, L., et al. (2013) Fusobacte-rium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host & Microbe, 14, 207-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Proença, M.A., Biselli, J.M., Succi, M., et al. (2018) Relationship between Fusobacterium nucleatum, Inflammatory Mediators and microRNAs in Colorectal Carcinogenesis. World Journal of Gastroenterology, 24, 5351-5365. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bashir, A., Miskeen, A.Y., Hazari, Y.M., et al. (2016) Fusobacte-rium nucleatum, Inflammation, and Immunity: The Fire within Human Gut. Tumor Biology, 37, 2805-2810. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gur, C., Ibrahim, Y., Isaacson, B., et al. (2015) Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell At-tack. Immunity, 42, 344-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sun, C., Li, B., Wang, B., et al. (2019) The Role of Fusobacte-rium nucleatum in Colorectal Cancer: From Carcinogenesis to Clinical Management. Chronic Diseases and Translation-al Medicine, 5, 178-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, F., Zhang, Q., Zhao, J., et al. (2019) A Potential Species of Next-Generation Probiotics? The Dark and Light Sides of Bacteroides fragilis in Health. Food Research International, 126, Article ID: 108590. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Si, H., Yang, Q., Hu, H., et al. (2021) Colorectal Cancer Oc-currence and Treatment Based on Changes in Intestinal Flora. Seminars in Cancer Biology, 70, 3-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gilmore, W.J., Johnston, E.L., Bitto, N.J., et al. (2022) Bac-teroides fragilis Outer Membrane Vesicles Preferentially Activate Innate Immune Receptors Compared to Their Parent Bacteria. Frontiers in Immunology, 13, Article ID: 970725. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Laurence, A., Tato, C.M., Davidson, T.S., et al. (2007) Interleu-kin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, 26, 371-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Brockmann, L., Giannou, A., Gagliani, N., et al. (2017) Regula-tion of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. International Journal of Molecular Sciences, 18, Article No. 1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chung, L., Orberg, E.T., Geis, A.L., et al. (2018) Bacteroides fragilis Toxin Coordinates a Pro-Carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells. Cell Host & Mi-crobe, 23, 203-214.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, C., Li, P., Xuan, J., et al. (2017) Cholesterol Enhances Colorectal Cancer Progression via ROS Elevation and MAPK Signaling Pathway Activation. Cellular Physiology and Biochemistry, 42, 729-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tariq, H., Noreen, Z., Ahmad, A., et al. (2022) Colibactin Possessing E. coli Isolates in Association with Colorectal Cancer and Their Genetic Diversity among Pakistani Population. PLOS ONE, 17, e0262662. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, S., Zhao, W., Lan, P., et al. (2021) The Microbiome in In-flammatory Bowel Diseases: From Pathogenesis to Therapy. Protein & Cell, 12, 331-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hernández-Luna, M.A., López-Briones, S. and Luria-Pérez, R. (2019) The Four Horsemen in Colon Cancer. Journal of Oncology, 2019, Article ID: 5636272. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Veziant, J., Villéger, R., Barnich, N., et al. (2021) Gut Microbiota as Potential Biomarker and/or Therapeutic Target to Improve the Management of Cancer: Focus on Colibactin-Producing Escherichia coli in Colorectal Cancer. Cancers, 13, Article No. 2215. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cuevas-Ramos, G., Petit, C.R., Marcq, I., et al. (2010) Escherichia coli Induces DNA Damage in Vivo and Triggers Genomic Instability in Mammalian Cells. Proceedings of the National Academy of Sciences, 107, 11537-11542. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wilson, M.R., Jiang, Y., Villalta, P.W., et al. (2019) The Human Gut Bacterial Genotoxin Colibactin Alkylates DNA. Science, 363, eaar7785. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cougnoux, A., Dalmasso, G., Martinez, R., et al. (2014) Bacterial Genotoxin Colibactin Promotes Colon Tumour Growth by Inducing a Senescence-Associated Secretory Phenotype. Gut, 63, 1932-1942. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xing, J., Liao, Y., Zhang, H., et al. (2022) Impacts f MicroRNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 804689. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Maddocks, O.D.K., Scanlon, K.M. and Donnenberg, M.S. (2013) An Escherichia coli Effector Protein Promotes Host Mutation via Depletion of DNA Mismatch Repair Proteins. MBio, 4, e00152-13. [Google Scholar] [CrossRef]
|
|
[32]
|
Choi, H.J., Kim, J., Do, K.H., et al. (2013) Enteropathogenic Esche-richia coli-Induced Macrophage Inhibitory Cytokine 1 Mediates Cancer Cell Survival: An in Vitro Implication of Infec-tion-Linked Tumor Dissemination. Oncogene, 32, 4960-4969. [Google Scholar] [CrossRef] [PubMed]
|