|
[1]
|
Yang, M.Q. and Xu, Y.J. (2016) Photocatalytic Conversion of CO2 over Graphene-Based Composites: Current Status and Future Perspective. Nanoscale Horizons, 1, 185-200. [Google Scholar] [CrossRef]
|
|
[2]
|
Li, S., Wen, S. and Ding, H. (2022) Improve the Electrochemical Performance of Na2Ti3O7 Nanorod through Pitch Coating. ACS Sus-tainable Chemistry & Engineering, 10, 4247-4257. [Google Scholar] [CrossRef]
|
|
[3]
|
Tang, Q., Ma, Y. and Wang, J. (2021) The Active Sites Engineering of Catalysts for CO2 Activation and Conversion. Solar RRL, 5, Article ID: 2000443. [Google Scholar] [CrossRef]
|
|
[4]
|
Nguyen, T.P., Nguyen, D.L. and Nguyen, V.H. (2020) Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomaterials, 10, Article 337. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fu, J., Jiang, K. and Qiu, X. (2020) Product Selectivity of Photocata-lytic CO2 Reduction Reactions. Materials Today, 32, 222-243. [Google Scholar] [CrossRef]
|
|
[6]
|
张青红. 二氧化钛基纳米材料及其在清洁能源技术中的研究进展[J]. 无机材料学报, 2012, 27(1): 1-10.
|
|
[7]
|
姜海洋, 刘慧玲. 半导体复合材料光催化还原CO2的研究进展[J]. 硅酸盐学报, 2022, 50(7): 2024-2055.
|
|
[8]
|
王会香, 姜东. TiO2光催化还原CO2 [J]. 化学进展, 2012, 24(11): 2116-2123.
|
|
[9]
|
Zhou, W., Shen, B. and Wang, F. (2020) Enhanced Photocatalytic Degradation of Xylene by Blackening TiO2 Nanoparticles with High Dispersion of CuO. Jour-nal of Hazardous Materials, 391, Article ID: 121642. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, Y., Mao, G. and Tang, Y. (2021) Synthesis of Core-Shell Nanostructured Cr2O3/C@TiO2 for Photocatalytic Hydrogen Production. Chinese Journal of Catalysis, 42, 225-234. [Google Scholar] [CrossRef]
|
|
[11]
|
Wang, Q., Cai, J., Biesold-McGee, G.V., et al. (2020) Silk Fibroin-Derived Nitrogen-Doped Carbon Quantum Dots Anchored on TiO2 Nanotube Arrays for Heteroge-neous Photocatalytic Degradation and Water Splitting. Nano Energy, 78, Article ID: 105313. [Google Scholar] [CrossRef]
|
|
[12]
|
Lin, C., Liu, X., Yu, B., et al. (2021) Rational Modification of Two-Dimensional Donor—Acceptor Covalent Organic Frameworks for Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Interfaces, 13, 27041-27048. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhong, Y.H., Lei, Y., Huang, J.F., et al. (2020) Design of an Alkaline Pyridyl Acceptor-Based Calix[4]Arene Dye and Synthesis of Stable Calixarene-TiO2 Porous Hybrid Materials for Effi-cient Photocatalysis. Journal of Materials Chemistry A, 8, 8883-8891. [Google Scholar] [CrossRef]
|
|
[14]
|
Wang, L., Tang, G., Liu, S., et al. (2022) Interfacial Active-Site-Rich 0D Co3O4/1D TiO2 p-n Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Chemical Engineering Journal, 428, Article ID: 131338. [Google Scholar] [CrossRef]
|
|
[15]
|
Kar, P., Zeng, S., Zhang, Y., et al. (2019) High Rate CO2 Photore-duction Using Flame Annealed TiO2 Nanotubes. Applied Catalysis B: Environmental, 243, 522-536. [Google Scholar] [CrossRef]
|
|
[16]
|
Dong, L., Xiong, Z., Zhou, Y., et al. (2020) Photocatalytic CO2 Reduction over Postcalcinated Atomically Thin TiO2 Nanosheets: Residual Carbon Removal and Structure Transfor-mation. Journal of CO2 Utilization, 41, Article ID: 101262. [Google Scholar] [CrossRef]
|
|
[17]
|
Jiang, D., Zhou, Y., Zhang, Q., et al. (2021) Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO2 for Efficient Photocatalytic Conversion of CO2 to CH4. ACS Applied Materials & Interfaces, 13, 46772-46782. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Deng, Z., Hu, S., Ji, J., et al. (2022) Deep Insight of the Influence of Cu Valence States in Co-Catalyst on CO2 Photoreduction. Applied Catalysis B: Environmental, 316, Article ID: 121621. [Google Scholar] [CrossRef]
|
|
[19]
|
Wang, A., Wu, S., Dong, J., et al. (2021) Interfacial Facet Engi-neering on the Schottky Barrier between Plasmonic Au and TiO2 in Boosting the Photocatalytic CO2 Reduction under Ultraviolet and Visible Light Irradiation. Chemical Engineering Journal, 404, Article ID: 127145. [Google Scholar] [CrossRef]
|
|
[20]
|
Hou, X., Cui, L., Du, H., et al. (2020) Lowering the Schottky Bar-rier of g-C3N4/Carbon Graphite Heterostructure by N-Doping for Increased Photocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 278, Article ID: 119253. [Google Scholar] [CrossRef]
|
|
[21]
|
Xiong, J., Zhang, M., Lu, M., et al. (2022) Achieving Simultaneous Cu Particles Anchoring in Meso-Porous TiO2 Nanofabrication for Enhancing Photo-Catalytic CO2 Reduction through Rapid Charge Separation. Chinese Chemical Letters, 33, 1313-1316. [Google Scholar] [CrossRef]
|
|
[22]
|
Chen, L., Li, H., Li, H., et al. (2022) Accelerating Photogenerated Charge Kinetics via the g-C3N4 Schottky Junction for Enhanced Visible-Light-Driven CO2 Reduction. Applied Catalysis B: Environmental, 318, Article ID: 121863. [Google Scholar] [CrossRef]
|
|
[23]
|
李丽, 石永霞. 铜基材料电催化二氧化碳还原反应的研究进展[J]. 稀有金属, 2022, 46(6): 681-694.
|
|
[24]
|
Dilla, M., Pougin, A. and Strunk, J. (2017) Evaluation of the Plasmonic Effect of Au and Ag on Ti-Based Photocatalysts in the Reduction of CO2 to CH4. Journal of Energy Chemistry, 26, 277-283. [Google Scholar] [CrossRef]
|
|
[25]
|
Liu, G., Wang, L., Wang, B., et al. (2022) Synchronous Activa-tion of Ag Nanoparticles and BiOBr for Boosting Solar-Driven CO2 Reduction. Chinese Chemical Letters, 34, Article ID: 107962. [Google Scholar] [CrossRef]
|
|
[26]
|
Ding, J., Bu, Y., Ou, M., et al. (2017) Facile Decoration of Car-bon Fibers with Ag Nanoparticles for Adsorption and Photocatalytic Reduction of CO2. Applied Catalysis B: Environ-mental, 202, 314-325. [Google Scholar] [CrossRef]
|
|
[27]
|
Chen, W., Xiong, J., Wen, Z., et al. (2023) Synchronistic Em-bedding of Oxygen Vacancy and Ag Nanoparticles into Potholed TiO2 Nanoparticles-Assembly for Collaboratively Promoting Photocatalytic CO2 Reduction. Molecular Catalysis, 542, Article ID: 113138. [Google Scholar] [CrossRef]
|
|
[28]
|
Cheng, S., Sun, Z., Lim, K.H., et al. (2022) Emerging Strategies for CO2 Photoreduction to CH4: From Experimental to Data-Driven Design. Advanced Energy Materials, 12, Article ID: 2200389. [Google Scholar] [CrossRef]
|