|
[1]
|
Vogel, A., Meyer, T., Sapisochin, G., et al. (2022) Hepatocellular Carcinoma. The Lancet (London, England), 400, 1345-1362. [Google Scholar] [CrossRef]
|
|
[2]
|
Robinson, P. (2008) Hepatocellular Carcinoma: Development and Early Detection. Cancer Imaging: The Official Publication of the International Cancer Imaging Society, 8, S128-S131. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer (Oxford, England: 1990), 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., et al. (2014) Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communica-tions, 5, Article No. 4006. [Google Scholar] [CrossRef]
|
|
[5]
|
Ahn, J.C., Qureshi, T.A., Singal, A.G., et al. (2021) Deep Learning in Hepatocellular Carcinoma: Current Status and Future Perspectives. World Journal of Hepatology, 13, 2039-2051. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nam, D., Chapiro, J., Paradis, V., et al. (2022) Artificial Intelligence in Liver Diseases: Improving Diagnostics, Prognostics and Response Prediction. JHEP Reports: Innovation in Hepatol-ogy, 4, Article ID: 100443. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Liu, J.Q., Ren, J.Y., Xu, X.L., et al. (2022) Ultrasound-Based Artificial Intelligence in Gastroenterology and Hepatology. World Journal of Gastroenterology, 28, 5530-5546. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sujana, H., Swarnamani, S. and Suresh, S. (1996) Application of Artificial Neural Networks for the Classification of Liver Lesions by Image Texture Parameters. Ultrasound in Medicine & Biology, 22, 1177-1181. [Google Scholar] [CrossRef]
|
|
[9]
|
Mittal, D., Kumar, V., Saxena, S.C., et al. (2011) Neural Network Based Focal Liver Lesion Diagnosis Using Ultrasound Images. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 35, 315-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shiraishi, J., Sugimoto, K., Moriyasu, F., et al. (2008) Computer-Aided Diagnosis for the Classification of Focal Liver Lesions by Use of Contrast-Enhanced Ultrasonography. Medical Physics, 35, 1734-1746. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yoshida, H., Casalino, D.D., Keserci, B., et al. (2003) Wave-let-Packet-Based Texture Analysis for Differentiation between Benign and Malignant Liver Tumours in Ultrasound Im-ages. Physics in Medicine and Biology, 48, 3735-3753. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Schmauch, B., Herent, P., Jehanno, P., et al. (2019) Diagnosis of Focal Liver Lesions from Ultrasound Using Deep Learning. Diagnostic and Interventional Imaging, 100, 227-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, Q., Wei, J., Hao, X., et al. (2020) Improving B-Mode Ultra-sound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. EBioMedicine, 56, Article ID: 102777. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Guo, L.H., Wang, D., Qian, Y.Y., et al. (2018) A Two-Stage Multi-View Learning Framework Based Computer-Aided Diagnosis of Liver Tumors with Contrast Enhanced Ultra-sound Images. Clinical Hemorheology and Microcirculation, 69, 343-354. [Google Scholar] [CrossRef]
|
|
[15]
|
Virmani, J., Kumar, V., Kalra, N., et al. (2013) SVM-Based Characteriza-tion of Liver Ultrasound Images Using Wavelet Packet Texture Descriptors. Journal of Digital Imaging, 26, 530-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Virmani, J., Kumar, V., Kalra, N., et al. (2013) A Comparative Study of Computer-Aided Classification Systems for Focal Hepatic Lesions from B-Mode Ultrasound. Journal of Medi-cal Engineering & Technology, 37, 292-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Virmani, J., Kumar, V., Kalra, N., et al. (2014) Neural Net-work Ensemble Based CAD System for Focal Liver Lesions from B-Mode Ultrasound. Journal of Digital Imaging, 27, 520-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hwang, Y.N., Lee, J.H., Kim, G.Y., et al. (2015) Clas-sification of Focal Liver Lesions on Ultrasound Images by Extracting Hybrid Textural Features and Using an Artificial Neural Network. Bio-Medical Materials and Engineering, 26, S1599-S1611. [Google Scholar] [CrossRef]
|
|
[19]
|
Yao, Z., Dong, Y., Wu, G., et al. (2018) Preoperative Diagnosis and Prediction of Hepatocellular Carcinoma: Radiomics Analysis Based on Multi-Modal Ultrasound Images. BMC Cancer, 18, Article No. 1089. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sugimoto, K., Shiraishi, J., Moriyasu, F., et al. (2010) Comput-er-Aided Diagnosis for Contrast-Enhanced Ultrasound in the Liver. World Journal of Radiology, 2, 215-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Oezdemir, I., Wessner, C.E., Shaw, C., et al. (2020) Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoembolization Treat-ment Response. Ultrasound in Medicine & Biology, 46, 2276-2286. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Turco, S., Tiyarattanachai, T., Ebrahimkheil, K., et al. (2022) Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 1670-1681. [Google Scholar] [CrossRef]
|
|
[23]
|
戴猛, 董怡, 韩红, 等. 原发性肝细胞肝癌Ki-67表达的影像组学预测[J]. 肿瘤影像学, 2018, 27(1): 7-11.
|
|
[24]
|
Dong, Y., Zhou, L., Xia, W., et al. (2020) Preoperative Predic-tion of Microvascular Invasion in Hepatocellular Carcinoma: Initial Application of a Radiomic Algorithm Based on Grayscale Ultrasound Images. Frontiers in Oncology, 10, Article No. 353. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hu, H.T., Wang, Z., Huang, X.W., et al. (2019) Ultrasound-Based Radiomics Score: A Potential Biomarker for the Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Eu-ropean Radiology, 29, 2890-2901. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
刘桐桐, 董怡, 韩红, 等. 基于影像组学方法的原发性肝细胞癌微血管侵犯和肿瘤分化等级预测[J]. 中国医学计算机成像杂志, 2018, 24(1): 83-87. [Google Scholar] [CrossRef]
|
|
[27]
|
Liu, F., Liu, D., Wang, K., et al. (2020) Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients. Liver Cancer, 9, 397-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, H. and Huo, F. (2022) Prediction of Early Recurrence of HCC after Hepatectomy by Contrast-Enhanced Ultrasound-Based Deep Learning Radiomics. Frontiers in Oncology, 12, Article ID: 930458. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ma, Q.P., He, X.L., Li, K., et al. (2021) Dynamic Con-trast-Enhanced Ultrasound Radiomics for Hepatocellular Carcinoma Recurrence Prediction after Thermal Ablation. Mo-lecular Imaging and Biology, 23, 572-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Loosen, S.H., Schulze-Hagen, M., Leyh, C., et al. (2018) IL-6 and IL-8 Serum Levels Predict Tumor Response and Overall Survival after TACE for Primary and Secondary Hepatic Malignancies. International Journal of Molecular Sciences, 19, Article No. 1766. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, D., Liu, F., Xie, X., et al. (2020) Accurate Prediction of Responses to Transarterial Chemoembolization for Patients with Hepatocellular Carcinoma by Using Artificial Intelligence in Con-trast-Enhanced Ultrasound. European Radiology, 30, 2365-2376. [Google Scholar] [CrossRef] [PubMed]
|