[1]
|
S. S. Franklin, S. A. Khan and N. D. Wong. Is pulse pressure useful in predicting risk for coronary heart disease. The Framing- ham Heart Study Circulation, 1999, 100(4): 354-360.
|
[2]
|
K. H. Choi, D. Y. Kim, S. J. Jung and I. H. Kim. A recording of the radial pulse wave system using photoplethysmogram. SICE Annual Conference 2005 in Okayama, Okayama, 8-10 August 2005, WP2-11.
|
[3]
|
H. Kantz, T. Schreiber. Nonlinear time series analysis. Cambridge: Cambridge University Press, 1999.
|
[4]
|
Z. J. He, Q. F. Meng and J. Y. Zhao. Time-frequency (scale) analysis and diagnosis for nonstationary dynamic signal of machinery. International Journal of Plant Engineering and Manage- ment, 1996, 1(1): 40-47.
|
[5]
|
G. S. Meltzer, Y. Y. Ivanov. Fault detection in gear drives with non-stationary rotational speed—Part I: The time-frequency approach. Mechanical Systems and Signal Processing, 2003, 17(5): 1033-1047.
|
[6]
|
W. Y. Wang, M. J. Harrap. Condition monitoring of rolling element bearings by using cone kernel time-frequency distribution. Processings of the SPIE Conference on Measurement Technology and Intelligent Instrument, Bellingham, 1993: 290-298.
|
[7]
|
V. Katvonik, L. Stankovic. Instantaneous frequency estimation using the Wigner distribution with varying and data-driven widow length. IEEE Transactions on Signal Processing, 1998, 46(9): 2351- 2325.
|
[8]
|
M. Casdagli. Nonlinear prediction of chaotic time series. Physica D, 1989, 35(3): 335-356.
|
[9]
|
R. Engbert. Testing for nonlinearity: The role of surrogate data. Chaos, Solitons & Fractals, 2002, 13(1): 79-84.
|
[10]
|
M. Banbrook, G. Ushaw and S. McLaughlin. Lyapunov exponents from a time series: A noise-robust extraction algorithm. Chaos, Solitons and Fractals, 1996, 7(7): 973-976.
|
[11]
|
J. Theiler, S. Eubank and A. Longtin. Testing for nonlinearity in time series: The method of surrogate data. Physica D: Nonlinear Phenomena, 1992, 58(1-4): 77-94.
|
[12]
|
K. Yonemoto, T. Yanagawa. Estimating the Lyapunov exponent from chaotic time series with dynamic noise. Statistical Metho- dology, 2007, 4(4): 461-480.
|
[13]
|
M. Kennel, S. Isabelle. Method to distinguish possible chaos from coloured noise and to determine embedding parameters. Physical Review A, 1992, 46(6): 3111-3118.
|
[14]
|
H. Kantz. A robust method to estimate the maximal Lyapunov exponent of a time series. Physics Letters A, 1994, 185(1): 77- 87.
|
[15]
|
A. Wolf, J. V. Swift, H. L. Swinney, et al. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317.
|
[16]
|
M. T. Rosenstein, J. J. Collins and C. J. Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 1993, 65(1-2): 117-134.
|