|
[1]
|
Garg, V. and Kumar, L. (2023) Metronomic Chemotherapy in Ovarian Cancer. Cancer Letters, 579, Article ID: 216469. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yen, A., Zhong, X., Lin, M.H., Nwachukwu, C., Albuquerque, K. and Hrycushko, B. (2023) Optimizing Online Adaptation Timing in the Treatment of Locally Advanced Cervical Can-cer. Practical Radiation Oncology. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chinnadurai, A., Breadner, D., Baloush, Z., Lohmann, A.E., Black, M., D’Souza, D. and Welch, S. (2023) Adjuvant Carboplatin and Paclitaxel with “Sandwich” Method Radiotherapy for Stage III or IV Endometrial Cancer: Long-Term Follow-up at a Single-Institution. Journal of Gynecologic Oncology, 35, e16. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Amiri, M., Khazaeli, P., Salehabadi, A. and Salavati-Niasari, M. (2021) Hydrogel Beads-Based Nanocomposites in Novel Drug Delivery Platforms: Recent Trends and Developments. Advances in Colloid and Interface Science, 288, Article ID: 102316. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Merino, S., Martín, C., Kostarelos, K., Prato, M. and Vázquez, E. (2015) Nanocomposite Hydrogels: 3D Polymer- Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 9, 4686-4697. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Thapa, K., FitzSimons, T.M., Otakpor, M.U., Siller, M.M., Crowell, A.D., Zepeda, J.E., Torres, E., Roe, L.N., Arts, J., Rosales, A.M. and Betancourt, T. (2023) Photothermal Modulation of Dynamic Covalent Poly (Ethylene Glycol)/ PEDOT Composite Hydrogels for On-Demand Drug Delivery. ACS Applied Materials & Interface, 15, 52180-52196. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gierlich, P., Donohoe, C., Behan, K., Kelly, D.J., Senge, M.O. and Gomes-da-Silva, L.C. (2023) Antitumor Immunity Mediated by Photodynamic Therapy Using Injectable Chitosan Hy-drogels for Intratumoral and Sustained Drug Delivery. Biomacromolecules. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Turabee, M.H., Thambi, T., Duong, H.T.T., Jeong, J.H. and Lee, D.S. (2018) A pH- and Temperature-Responsive Bioresorbable Injectable Hydrogel Based on Polypeptide Block Co-polymers for the Sustained Delivery of Proteins in vivo. Biomaterials Science, 6, 661-671. [Google Scholar] [CrossRef]
|
|
[9]
|
Cui, R., Wu, Q., Wang, J., Zheng, X., Ou, R., Xu, Y., Qu, S. and Li, D. (2021) Hydrogel-by-Design: Smart Delivery System for Cancer Immunotherapy. Frontiers in Bioengineering and Bi-otechnology, 9, Article 723490. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Du, X., Zhou, J., Shi, J. and Xu, B. (2015) Supramolecular Hy-drogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 115, 13165-13307. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, Z., Wei, P., Qi, Y., Huang, X. and Xie, Y. (2023) High Stretchable and Self-Healing Nanocellulose-Poly(Acrylic acid) Composite Hydrogels for Sustainable CO2 Shutoff. Car-bohydrate Polymers, 311, Article ID: 120759. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cagnetta, G.E., Martínez, S.R., Ibarra, L.E., Gallastegui, A., Martucci, J.F., Palacios, R.E., Chesta, C.A. and Gómez, M.L. (2023) Reusable Antimicrobial Antibiotic-Free Dressings Obtained by Photopolymerization. Biomaterials Advances, 149, Article ID: 213399. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Froelich, A., Jakubowska, E., Jadach, B., Gadziński, P. and Osmałek, T. (2023) Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics, 15, Article 759. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sobczak-Kupiec, A., Kudłacik-Kramarczyk, S., Drabczyk, A., Cylka, K. and Tyliszczak, B. (2023) Studies on PVP- Based Hydrogel Polymers as Dressing Materials with Prolonged Anticancer Drug Delivery Function. Materials, 16, Article 2468. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mora-Boza, A., Ahmedin, Z. and García, A.J. (2023) Controlled Release of Therapeutic Antibody Using Hydrolytically Degradable Microgels. Journal of Biomedical Materials Research Part A. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jahan, I., Ganesan, V., Sahu, M., Nandave, M. and Sen, S. (2023) Adhe-sivity-Tuned Bioactive Gelatin/Gellan Hybrid Gels Drive Efficient Wound Healing. International Journal of Biological Macromolecules, 254, Article ID: 127735. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, J. and Mooney, D.J. (2016) Designing Hydrogels for Controlled Drug Delivery. Nature Reviews Materials, 1, Article No. 16071. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Vishnevetskii, D.V., Averkin, D.V., Efimov, A.A., Lizunova, A.A., Shamova, O.V., Vladimirova, E.V., Sukhareva, M.S. and Mekhtiev, A.R. (2023) L-Cysteine and N-Acetyl-L-Cysteine-Mediated Synthesis of Nanosilver-Based Sols and Hydrogels with Antibacterial and Antibiofilm Properties. Journal of Materials Chemistry B, 11, 5794-5804. [Google Scholar] [CrossRef]
|
|
[19]
|
Xu, Y., Hu, Q., Wei, Z., Ou, Y., Cao, Y., Zhou, H., Wang, M., Yu, K. and Liang, B. (2023) Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomaterials Research, 27, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bai, L., Tao, G., Feng, M., Xie, Y., Cai, S., Peng, S. and Xiao, J. (2023) Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics, 15, Article 1334. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, J., Jing, G., Huang, W., Xin, L., Du, J., Cai, X., Xu, Y., Lu, X. and Chen, W. (2022) Rapid in situ Hydrogel LAMP for On-Site Large-Scale Parallel Single-Cell HPV Detec-tion. Analytical Chemistry, 94, 18083-18091. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Pang, H., Lai, Q., Liu, G., Song, Q., Tong, R., Chen, Q., Luo, Y., Yu, T. and Dong, Y. (2022) Pelvic Bones ADC Could Help to Predict Severe Hematologic Toxicity in Patients Un-dergoing Concurrent Chemoradiotherapy for Cervical Cancer. Magnetic Resonance Imaging, 94, 98-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wei, L., Chen, J., Zhao, S., Ding, J. and Chen, X. (2017) Ther-mo-Sensitive Polypeptide Hydrogel for Locally Sequential Delivery of Two-Pronged Antitumor Drugs. Acta Biomateri-alia, 58, 44-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xu, S., Tang, Y.Y., Yu, Y.X., Yun, Q., Yang, J.P., Zhang, H., Peng, Q., Sun, X., Yang, L.L., Fu, S. and Wu, J.B. (2017) Novel Composite Drug Delivery System as a Novel Radio Sensitizer for the Local Treatment of Cervical Carcinoma. Drug Delivery, 24, 1139-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ronsini, C., Solazzo, M.C., Bizzarri, N., Ambrosio, D., La Verde, M., Torella, M., Carotenuto, R.M., Cobellis, L., Colacurci, N. and De Franciscis, P. (2022) ASO Author Reflec-tions: Fertility-Sparing Treatment for Early-Stage Cervical Cancer 2 cm or Larger in Size: A Problem Still Open. Annals of Surgical Oncology, 29, 8359-8360. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Grijalvo, S., Alagia, A., Puras, G., Zárate, J., Mayr, J., Pedraz, J.L., Eritja, R. and Díaz, D.D. (2017) Cationic Nioplexes-in-Polysaccharide-Based Hydrogels as Versatile Biodegradable Hybrid Materials to Deliver Nucleic Acids. Journal of Materials Chemistry B, 5, 7756-7767. [Google Scholar] [CrossRef]
|
|
[27]
|
Kiseleva, M., Omar, M.M., Boisselier, É., Selivanova, S.V. and Fortin, M.A. (2022) A Three-Dimensional Printable Hydrogel Formulation for the Local Delivery of Therapeutic Nanoparticles to Cervical Cancer. ACS Biomaterials Science & Engineering, 8, 1200-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Huang, B., Zhu, L., Wei, H., Shi, H., Zhang, D., Yuan, H., Luan, L., Zheng, N., Xu, S., Nawaz, W., Hong, Y., Wu, X. and Wu, Z. (2021) Potent Neutralizing Humanized Antibody with Topical Therapeutic Potential against HPV18-Related Cervical Cancer. Frontiers in Immunology, 12, Article 678318. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gu, L., Cheng, M., Hong, Z., Di, W. and Qiu, L. (2021) The Ef-fect of Local Photodynamic Therapy with 5-Aminolevulinic Acid for the Treatment of Cervical Low-Grade Squamous Intraepithelial Lesions with High-Risk HPV Infection: A Retrospective Study. Photodiagnosis and Photodynamic Ther-apy, 33, Article ID: 102172. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, T., Zhang, Y., Tang, Y., Qin, L., Shen, Y., Wang, B., Zhang, L., Cao, L., Zhou, Y., Su, Y., Wang, L. and Zhang, M. (2022) The Effect of High-Risk HPV E6/E7 mRNA on the Efficacy of Topical Photodynamic Therapy with 5-Ami- nolevulinic Acid for Cervical High-Grade Squamous In-traepithelial Lesions. Photodiagnosis and Photodynamic Therapy, 39, Article ID: 102974. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Curry, T., Epstein, T., Smith, R. and Kopelman, R. (2013) Pho-tothermal Therapy of Cancer Cells Mediated by Blue Hydrogel Nanoparticles. Nanomedicine, 8, 1577-1586. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, M., Liu, X., Mao, Y., He, Y., Xu, J., Zheng, F., Tan, W., Rong, S., Chen, Y., Jia, X. and Li, H. (2022) Oxygen-Generating Hydrogels Overcome Tumor Hypoxia to Enhance Photodynam-ic/Gas Synergistic Therapy. ACS Applied Materials & Interfaces, 14, 27551-27563. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Murakami, N., Okuma, K., Kato, T. and Igaki, H. (2022) Now Is It Time to Implement Spacers in Cervical Cancer Brachytherapy? Journal of Radiation Research, 63, 696-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ahmed, O., Nguyen, V.D., Ginsburg, M. and Barry, P. (2019) CT-Guided Placement of a Polyethylene Glycol Hydrogel in Brachytherapy for Gynecologic Malignancy to Limit Nontarget Organ Toxicity. Journal of Vascular and Interventional Radiology, 30, 469-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gospodinova, A., Nankov, V., Tomov, S., Redzheb, M. and Petrov, P.D. (2021) Extrusion Bioprinting of Hydroxyethylcellulose-Based Bioink for Cervical Tumor Model. Carbohydrate Polymers, 260, Article ID: 117793. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bartosch, C., Pires, M., Jerónimo, C. and Lopes J.M., (2017) The Role of Pathology in the Management of Patients with Endometrial Carcinoma. Future Medicine, 13, 1003-1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sun, M., Bjørge, T., Teleka, S., Engeland, A., Wennberg, P., Hägg-ström, C. and Stocks, T. (2022) Interaction of Leisure-Time Physical Activity with Body Mass Index on the Risk of Obesity-Related Cancers: A Pooled Study. International Journal of Cancer, 151, 859-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yeung, A.R., Deshmukh, S., Klopp, A.H., Gil, K.M., Wenzel, L., Westin, S.N., Konski, A.A., Gaffney, D.K., Small Jr., W., Thompson, J.S., Doncals, D.E., Cantuaria, G.H.C., D’Souza, D.P., Chang, A., Kundapur, V., Mohan, D.S., Haas, M.L., Kim, Y.B., Ferguson, C.L., Pugh, S.L., Kachnic, L.A. and Bruner, D.W. (2022) Intensity-Modulated Radiation Therapy Reduces Patient-Reported Chronic Toxicity Compared with Con-ventional Pelvic Radiation Therapy: Updated Results of a Phase III Trial. Journal of Clinical Oncology, 40, 3115-3119. [Google Scholar] [CrossRef]
|
|
[39]
|
Ruan, X. and Mueck, A.O. (2022) Primary Choice of Estrogen and Progestogen as Components for HRT: A Clinical Pharmacological View. Climacteric, 25, 443-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
El-Achi, V., Burling, M. and Al-Aker, M. (2022) Sentinel Lymph Node Biopsy at Robotic-Assisted Hysterectomy for Atypical Hyperplasia and Endometrial Cancer. Journal of Robotic Surgery, 16, 1111-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ladbury, C., Sueyoshi, M.H., Brovold, N.M., Kumar, R., An-draos, T.Y., Gogineni, E., Kim, M., Klopp, A., Albuquerque, K., Kunos, C., Leung, E., Mantz, C., Biswas, T., Beriwal, S., Small Jr., W., Erickson, B., Gaffney, D., Lo, S.S. and Viswanathan, A.N. (2023) Stereotactic Body Radiation Thera-py for Gynecologic Malignancies: A Case-Based Radiosurgery Society Practice Review. Practical Radiation Oncology. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Viswanathan, A.N., Damato, A.L. and Nguyen, P.L. (2013) Novel Use of a Hydrogel Spacer Permits Reirradiation in Otherwise Incurable Recurrent Gynecologic Cancers. Journal of Clin-ical Oncology, 31, e446-e447. [Google Scholar] [CrossRef]
|
|
[43]
|
Takagawa, Y. and Itami, J. (2022) SpaceOAR Hydrogel Spacer in Interstitial Brachytherapy for Intrapelvic Recurrent Endometrial Cancer. BJR Case Reports, 8, Article ID: 20210220. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Subramanian, B., Agarwal, T., Basak, P., Maiti, T.K. and Guha, S.K. (2019) RISUG® Based Improved Intrauterine Contraceptive Device (IIUCD) Could Impart Protective Effects against Development of Endometrial Cancer. Medical Hypotheses, 124, 67-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Huang, Y., Feng, Q., Jiang, H., Zhou, W., Chen, J., Gao, J., Wang, K., Wan, X. and Yu, Y. (2020) Mimicking the Endometrial Cancer Tumor Microenvironment to Reprogram Tu-mor-Associated Macrophages in Disintegrable Supramolecular Gelatin Hydrogel. International Journal of Nanomedicine, 15, 4625-4637. [Google Scholar] [CrossRef]
|
|
[46]
|
Engel, B.J., Constantinou, P.E., Sablatura, L.K., Doty, N.J., Carson, D.D., Farach-Carson, M.C., Harrington, D.A. and Zarembinski, T.I. (2015) Multilayered, Hyaluronic Ac-id-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. Advanced Healthcare Materials, 4, 1664-1674. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lu, T., Bankhead III, A., Ljungman, M. and Neamati, N. (2019) Mul-ti-Omics Profiling Reveals Key Signaling Pathways in Ovarian Cancer Controlled by STAT3. Theranostics, 9, 5478-5496. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhang, M., Bao, Y., Zhang, H., Li, D., Mei, X. and Cheng, X. (2023) Efficacy and Safety of Intraperitoneal Bevacizumab Combined with Hyperthermic Intraperitoneal Chemotherapy in the Treatment of Patients with Ovarian Cancer and Peritoneal Effusion and the Effect on Serum lncRNA H19 and VEGF Levels. Journal of Obstetrics and Gynaecology, 43, Article ID: 2204940. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, Y. (2023) Efficacy and Safety of PARP Inhibitors for Maintenance Treatment of Ovarian Cancer, Regardless of BRCA or HRD Status: A Comprehensive Updated Me-ta-Analysis. Journal of Obstetrics and Gynaecology, 43, Article ID: 2171282. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ma, X., Liu, Y., Wu, H., Tan, J., Yi, W., Wang, Z., Yu, Z. and Wang, X. (2023) Self-Assembly Nanoplatform of Platinum (IV) Prodrug for Enhanced Ovarian Cancer Therapy. Materials Today Bio, 21, Article ID: 100698. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
González-Martín, A., Pothuri, B., Vergote, I., DePont Christen-sen, R., Graybill, W., Mirza, M.R., McCormick, C., Lorusso, D., Hoskins, P., Freyer, G., Baumann, K., Jardon, K., Re-dondo, A., Moore, R.G., Vulsteke, C., O’Cearbhaill, R.E., Lund, B., Backes, F., Barretina-Ginesta, P., Haggerty, A.F., Rubio-Pérez, M.J., Shahin, M.S., Mangili, G., Bradley, W.H., Bruchim, I., Sun, K., Malinowska, I.A., Li, Y., Gupta, D. and Monk, B.J. (2019) Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England Jour-nal of Medicine, 381, 2391-2402. [Google Scholar] [CrossRef]
|
|
[53]
|
Jin, R., Yang, X., Zhao, D., Hou, X., Li, C., Song, X., Chen, W., Wang, Q., Zhao, Y. and Liu, B. (2019) An Injectable Hybrid Hydrogel Based on a Genetically Engineered Polypeptide for Second Near-Infrared Fluorescence/Photoacoustic Imaging-Monitored Sustained Chemo-Photothermal Therapy. Na-noscale, 11, 16080-16091. [Google Scholar] [CrossRef]
|
|
[54]
|
Dillman, R.O., Nistor, G.I. and Keirstead, H.S. (2023) Autologous Dendritic Cells Loaded with Antigens from Self- Renewing Autologous Tumor Cells as Patient-Specific Therapeutic Cancer Vaccines. Human Vaccines & Immunotherapeutics, 19, Article ID: 2198467. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Al-Sudani, H., Ni, Y., Jones, P., Karakilic, H., Cui, L., Johnson, L.D.S., Rose, P.G., Olawaiye, A., Edwards, R.P., Uger, R.A., Lin, G.H.Y. and Mahdi, H. (2023) Targeting CD47-SIRPa Axis Shows Potent Preclinical Anti-Tumor Activity as Monotherapy and Synergizes with PARP Inhibition. npj Precision Oncology, 7, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Berd, D. (2023) Portrait of an Autologous Cancer Vaccine: Then and Now. Human Vaccines & Immunotherapeutics, 19, Article ID: 2172925. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zeng, S., Liu, D., Yu, Y., Zou, L., Jin, X., Liu, B. and Liu, L. (2023) Efficacy and Safety of PD-1/PD-L1 Inhibitors in the Treatment of Recurrent and Refractory Ovarian Cancer: A Systematic Review and a Meta-Analysis. Frontiers in Pharmacology, 14, Article 1111061. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Moon, H., Kim, S.G., Kim, S.K., Kim, J., Lee, S.R. and Moon, Y.W. (2022) A Case Report of Re-Challenge of Immune Checkpoint Inhibitors after Immune-Related Neurological Ad-verse Events: Review of Literature. Medicine, 101, e30236. [Google Scholar] [CrossRef]
|
|
[59]
|
Suraiya, A.B., Evtimov, V.J., Truong, V.X., Boyd, R.L., Forsythe, J.S. and Boyd, N.R. (2022) Micro-Hydrogel Injectables That Deliver Effective CAR-T Immunotherapy against 3D Solid Tumor Spheroids. Translational Oncology, 24, Article ID: 101477. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Yamaguchi, K., Hiraike, O., Iwaki, H., Matsumiya, K., Naka-mura, N., Sone, K., Ohta, S., Osuga, Y. and Ito, T. (2021) Intraperitoneal Administration of a Cisplatin-Loaded Nanogel through a Hybrid System Containing an Alginic Acid-Based Nanogel and an in situ Cross-Linkable Hydrogel for Perito-neal Dissemination of Ovarian Cancer. Molecular Pharmaceutics, 18, 4090-4098. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Hua, Y., Yin, H., Liu, X., Xie, J., Zhan, W., Liang, G. and Shen, Y. (2022) Salt-Inducible Kinase 2-Triggered Release of Its Inhibitor from Hydrogel to Suppress Ovarian Can-cer Metastasis. Advanced Science, 9, e2202260. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Kast, V. and Loessner, D. (2021) 3D Models for Ovarian Cancer. In: Schatten, H., Ed., Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies, Springer, Cham, 139-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Lengyel, E., Burdette, J.E., Kenny, H.A., Matei, D., Pilrose, J., Haluska, P., Nephew, K.P., Hales, D.B. and Stack, M.S. (2014) Epithelial Ovarian Cancer Experimental Models. Oncogene, 33, 3619-3633. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Pearce, O.M.T., Delaine-Smith, R.M., Maniati, E., Nichols, S., Wang, J., Böhm, S., Rajeeve, V., Ullah, D., Chakravarty, P., Jones, R.R., Montfort, A., Dowe, T., Gribben, J., Jones, J.L., Kocher, H.M., Serody, J.S., Vincent, B.G., Connelly, J., Brenton, J.D., Chelala, C., Cutillas, P.R., Lockley, M., Bessant, C., Knight, M.M. and Balkwill, F.R. (2018) Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers. Cancer Discovery, 8, 304-319. [Google Scholar] [CrossRef]
|
|
[65]
|
Loessner, D., Holzapfel, B.M. and Clements, J.A. (2014) En-gineered Microenvironments Provide New Insights into Ovarian and Prostate Cancer Progression and Drug Responses. Advanced Drug Delivery Reviews, 79-80, 193-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Kaemmerer, E., Melchels, F.P., Holzapfel, B.M., Meckel, T., Hut-macher, D.W. and Loessner, D. (2014) Gelatine Methacrylamide-Based Hydrogels: An Alternative Three-Dimensional Cancer Cell Culture System. Acta Biomaterialia, 10, 2551-2562. [Google Scholar] [CrossRef] [PubMed]
|