|
[1]
|
唐彩银, 李瑗, 张继, 等. CT纹理分析在肾脏透明细胞癌分级的临床应用[J]. 医学理论与实践, 2019, 32(21): 3416-3418, 3409.
|
|
[2]
|
Mir, A.H., hanmandlu, M. and Tandon, S.N. Texture Analysis of CT Images. IEEE Engineering in Medicine and Biology Magazine, 14, 781-786.[CrossRef]
|
|
[3]
|
Corrias, G., Micheletti, G., Barberini, L., Suri, J.S. and Saba, L. (2022) Texture Analysis Imaging “What a Clinical Radiologist Needs to Know”. European Journal of Radiology, 146, Article ID: 110055. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tuceryan, M. and Jain, A.K. (1998) Texture Analysis. In: Chen, C.H. and Pau, L.F., Eds., Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing Co., 207-248. [Google Scholar] [CrossRef]
|
|
[5]
|
Uppaluri, R., Mitsa, T., Sonka, M., Hoffman, E.A. and McLennan, G. (1997) Quantification of Pulmonary Emphysema from Lung Computed Tomography Images. Ameri-can Journal of Respiratory and Critical Care Medicine, 156, 248-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Reginelli, A., Belfiore, M.P., Monti, R., Cozzolino, I., Costa, M., Vicidomini, G., Grassi, R., Morgillo, F., Urraro, F., Nardone, V. and Cappabianca, S. (2020) The Texture Analysis as a Predictive Method in the Assessment of the Cytological Specimen of CT-Guided FNAC of the Lung Cancer. Medi-cal Oncology, 37, Article Number: 54. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Brunese, L., Mercaldo, F., Reginelli, A. and Santone, A. (2020) An Ensemble Learning Approach for Brain Cancer Detection Exploiting Radiomic Features. Computer Methods and Programs in Biomedicine, 185, Article ID: 105134. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Brunese, L., Mercaldo, F., Reginelli, A. and Santone, A. (2020) Formal Methods for Prostate Cancer Gleason Score and Treatment Prediction Using Radiomic Biomarkers. Magnetic Resonance Imaging, 66, 165-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2015) Radiomics: Im-ages Are More than Pictures, They Are Data. Radiology, 278, 563-577.
|
|
[10]
|
Müller, N.L., Staples, C.A., Miller, R.R. and Abboud, R.T. (1988) Density Mask. An Objective Method to Quantitate Emphysema Using Computed Tomography. Chest, 94, 782-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bankier, A.A., Maertelaer, V.D., Keyzer, C. and Gevenois, P.A. (1999) Pulmonary Emphysema: Subjective Visual Grading versus Objective Quantification with Macro-scopic Morphometry and Thin-Section CT Densitometry. Radiology, 211, 851-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wibmer, A., Hricak, H., Gondo, T., et al. (2015) Haralick Texture Analysis of Prostate MRl: Utility for Differentiating Non-Cancerous Prostate from Prostate Cancer and Differen-tiating with Different Gleason Scores. European Radiology, 25, 2840-2850. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fehr, D., Veeraraghavanm H., Wibmer, A., et al. (2015) Auto-matic Classification of Prostate Cancer Gleason Sores from Multi-Parametric Magnetic Resonance Images. Proceedings of the National Academy of Sciences of the United States of America, 112, E6265-E6273.
|
|
[14]
|
Ohno, Y., Aoyagi, K., Takenaka, D., Yoshikawa, T., Ikezaki, A., Fujisawa, Y., Murayama, K., Hattori, H. and Toyama, H. (2021) Machine Learning for Lung CT Texture Analysis: Improvement of Inter-Observer Agreement for Radiological Finding Classifica-tion in Patients with Pulmonary Diseases. European Journal of Radiology, 134, Article ID: 109410. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Grove, O., Berglund, A.E., Schabath, M.B., Aerts, H.J.W.L., Dekker, A., et al. (2021) Correction: Quantitative Computed Tomographic Descriptors Associate Tumor Shape Com-plexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma. PLOS ONE, 16, e0248541. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sørensen, L., Igel, C., Hansen, N.L., et al. (2016) Early Detec-tion of Alzheimer’s Disease Using MRI Hippocampal Texture. Human Brain Mapping, 37, 1148-1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
王朝, 邹卫. 原发性自发性气胸病因研究进展[J]. 临床肺科杂志, 2015, 20(6): 1120-1122, 1126.
|