|
[1]
|
Zhao, D.H., Fan, Q., Ning, J.X., Wang, X. and Tian, J.Y. (2019) Myocardial Bridge-Related Coronary Heart Disease: Independent Influencing Factors and Their Predicting Value. World Journal of Clinical Cases, 7, 1986-1995. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kowara, M. and Cudnoch-Jedrzejewska, A. (2021) Different Ap-proaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. International Journal of Molecular Sciences, 22, Article 4354. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Shaya, G.E., Leucker, T.M., Jones, S.R., Martin, S.S. and Toth, P.P. (2022) Coronary Heart Disease Risk: Low-Density Lipoprotein and beyond. Trends in Cardiovascular Medicine, 32, 181-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, C.J., Liu, J.T., Guo, F., Ji, Y.Y. and Liu, N. (2009) Endothelin-1 Induces the Expression of C-Reactive Protein in Vascular Smooth Muscle Cells. Biochemical and Biophys-ical Research Communications, 389, 537-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Daiber, A., Di Lisa, F., Oelze, M., Kröller-Schön, S., Steven, S., Schulz, E. and Münzel, T. (2017) Crosstalk of Mitochondria with NADPH Oxidase via Reactive Oxygen and Nitrogen Species Signalling and Its Role for vascular Function. British Journal of Pharmacology, 174, 1670-1689. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Takahashi, K., Okumura, H., Guo, R. and Naruse, K. (2017) Effect of Ox-idative Stress on Cardiovascular System in Response to Gravity. International Journal of Molecular Sciences, 18, Article 1426. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, Q., Youn, J.Y. and Cai, H. (2015) Mechanisms and Consequences of Endothelial Nitric Oxide Synthase Dysfunction in Hypertension. Journal of Hypertension, 33, 1128-1136. [Google Scholar] [CrossRef]
|
|
[8]
|
Malacrida, S., Giannella, A., Ceolotto, G., Reggiani, C., Vezzoli, A., Mrakic-Sposta, S., Moretti, S., Turner, R., Falla, M., Brugger, H. and Strapazzon, G. (2019) Transcription Factors Regulation in Human Peripheral White Blood Cells during Hypobaric Hypoxia Exposure: An in-vivo Experi-mental Study. Scientific Reports, 9, Article No. 9901. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Agrawal, A., Rathor, R. and Suryakumar, G. (2017) Oxidative Protein Modification Alters Proteostasis under Acute Hypobaric Hypoxia in Skeletal Muscles: A Comprehensive in vivo Study. Cell Stress and Chaperones, 22, 429-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bilo, G., Caravita, S., Torlasco, C. and Parati, G. (2019) Blood Pressure at High Altitude: Physiology and Clinical Implications. Kardiologia Polska, 77, 596-603. [Google Scholar] [CrossRef]
|
|
[11]
|
Beall, C.M., Laskowski, D. and Erzurum, S.C. (2012) Nitric Oxide in Adaptation to Altitude. Free Radical Biology and Medicine, 52, 1123-1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mortimer Jr., E.A., Monson, R.R. and MacMahon, B. (1977) Reduction in Mortality from Coronary Heart Disease in Men Residing at High Altitude. The New England Jour-nal of Medicine, 296, 581-585. [Google Scholar] [CrossRef]
|
|
[13]
|
Faeh, D., Gutzwiller, F., Bopp, M. and Swiss National Co-hort Study Group (2009) Lower Mortality from Coronary Heart Disease and Stroke at Higher Altitudes in Switzerland. Circulation, 120, 495-501. [Google Scholar] [CrossRef]
|
|
[14]
|
赵黎明, 吴桂刚. 分析血清胆红素与尿酸对冠心病患者的临床检验价值[J]. 中国现代药物应用, 2019, 13(5): 21-22.
|
|
[15]
|
胡桂榕. 血清胆红素与尿酸联合检验在冠心病诊断中的应用价值[J]. 内蒙古医学杂志, 2019, 51(12): 1467-1468.
|
|
[16]
|
Amin, S.B., Smith, T. and Timler, G. (2019) Developmental Influence of Unconjugated Hyperbilirubinemia and Neurobehavioral Disorders. Pediatric Re-search, 85, 191-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
徐若溪, 孙瑞红. 血清胆红素与缺血性脑卒中的研究进展[J]. 临床与病理杂志, 2022, 42(8): 2020-2025. [Google Scholar] [CrossRef]
|
|
[18]
|
Vítek, L. and Schwertner, H.A. (2007) The Heme Cat-abolic Pathway and Its Protective Effects on Oxidative Stress-Mediated Diseases. Advances in Clinical Chemistry, 43, 1-57. [Google Scholar] [CrossRef]
|
|
[19]
|
Thakkar, M., Edelenbos, J. and Doré, S. (2019) Biliru-bin and Ischemic Stroke: Rendering the Current Paradigm to Better Understand the Protective Effects of Bilirubin. Mo-lecular Neurobiology, 56, 5483-5496. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wagner, K.H., Wallner, M., Mölzer, C., Gazzin, S., Bulmer, A.C., Tiribelli, C. and Vitek, L. (2015) Looking to the Horizon: The Role of Bilirubin in the Development and Prevention of Age-Related Chronic Diseases. Clinical Science, 129, 1-25. [Google Scholar] [CrossRef]
|
|
[21]
|
Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N. and Ames, B.N. (1987) Bilirubin Is an Antioxidant of Possible Physio-logical Importance. Science, 235, 1043-1046. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Boon, A.C., Bulmer, A.C., Coombes, J.S. and Fassett, R.G. (2014) Circulating Bilirubin and Defense against Kidney Disease and Cardiovas-cular Mortality: Mechanisms Contributing to Protection in Clinical Investigations. American Journal of Physiology-Renal Physiology, 307, F123-F136. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Schwertner, H.A., Jackson, W.G. and Tolan, G. (1994) Association of Low Serum Concentration of Bilirubin with Increased Risk of Coronary Artery Disease. Clinical Chemistry, 40, 18-23. [Google Scholar] [CrossRef]
|
|
[24]
|
Akboga, M.K., Canpolat, U., Sahinarslan, A., et al. (2015) Association of Serum Total Bilirubin Level with Severity of Coronary Atherosclerosis Is Linked to Systemic Inflammation. Atherosclerosis, 240, 110-114.
|
|
[25]
|
Basiglio, C.L., Arriaga, S.M., Pelusa, F., Almará, A.M., Kapitulnik, J. and Mottino, A.D. (2009) Complement Activation and Disease: Protective Effects of Hyperbilirubi-naemia. Clinical Science, 118, 99-113. [Google Scholar] [CrossRef]
|
|
[26]
|
Haga, Y., Tempero, M.A. and Zetterman, R.K. (1996) Unconjugated Bilirubin Inhibits in vitro Cytotoxic T Lymphocyte Activity of Human Lymphocytes. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1317, 65-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sedlak, T.W., Saleh, M., Higginson, D.S., Paul, B.D., Juluri, K.R. and Snyder, S.H. (2009) Bilirubin and Glutathione Have Complementary Antioxidant and Cytoprotective Roles. Proceedings of the National Academy of Sciences of the United States of America, 106, 5171-5176. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Oda, E. (2014) A Decrease in Total Bilirubin Predicted Hyper-LDL Cholesterolemia in a Health Screening Population. Atherosclerosis, 235, 334-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Keshavan, P., Deem, T.L., Schwemberger, S.J., Babcock, G.F., Cook-Mills, J.M. and Zucker, S.D. (2005) Unconjugated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration. The Journal of Immunology, 174, 3709-3718.
|
|
[30]
|
Hopkins, P.N., Wu, L.L., Hunt, S.C., James, B.C., Vincent, G.M. and Williams, R.R. (1996) Higher Serum Bilirubin Is Associated with Decreased Risk for Early Familial Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 250-255. [Google Scholar] [CrossRef]
|
|
[31]
|
Madhavan, M., Wattingney, W.A., Srinivasan, S.R. and Berenson, G.S. (1997) Serum Bilirubin Distribution and Its Relation to Cardiovascular Risk in Children and Young Adults. Ather-osclerosis, 131, 107-113. [Google Scholar] [CrossRef]
|
|
[32]
|
Hunt, S.C., Kronenberg, F., Eckfeldt, J.H., Hopkins, P.N., Myers, R.H. and Heiss, G. (2001) Association of Plasma Bilirubin with Coronary Heart Disease and Segregation of Bil-irubin as a Major Gene Trait: The NHLBI Family Heart Study. Atherosclerosis, 154, 747-754. [Google Scholar] [CrossRef]
|
|
[33]
|
Pena, E., Brito, J., El Alam, S. and Siques, P. (2020) Oxida-tive Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. International Journal of Molecular Sciences, 21, Article 6421. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Y., Branicky, R., Noë, A. and Hekimi, S. (2018) Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. Journal of Cell Biology, 217, 1915-1928. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sheng, Y., Abreu, I.A., Cabelli, D.E., et al. (2014) Super-oxide Dismutases and Superoxide Reductases. Chemical Reviews, 114, 3854-3918. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Khosravi, M., Poursaleh, A., Ghasempour, G., Farhad, S. and Najafi, M. (2019) The Effects of Oxidative Stress on the Development of Atherosclerosis. Biological Chemistry, 400, 711-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Nian, S., Feng, L., Zhao, Y., et al. (2017) Combination of Susceptibil-ity Gene and Traditional Risk Factors Might Enhance the Performance of Coronary Heart Disease Screening Strategy. Oncotarget, 8, 69005-69011. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Torzewski, M., Ochsenhirt, V., Kleschyov, A.L., Oelze, M., Daiber, A., Li, H., Rossmann, H., Tsimikas, S., Reifenberg, K., Cheng, F., Lehr, H.A., Blankenberg, S., Förstermann, U., Münzel, T. and Lackner, K.J. (2007) Deficiency of Glutathione Peroxidase-1 Accelerates the Progression of Atheroscle-rosis in Apolipoprotein E-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 850-857. [Google Scholar] [CrossRef]
|
|
[39]
|
Nathan, C. and Shiloh, M.U. (2000) Reactive Oxygen and Nitrogen Intermediates in the Relationship between Mammalian Hosts and Microbial Pathogens. Proceedings of the National Academy of Sciences of the United States of America, 97, 8841-8848. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
魏爱婷. 冠心病患者血清同型半胱氨酸与丙二醛、超氧化物歧化酶的相关性分析[J]. 现代诊断与治疗, 2017, 28(18): 3469-3470.
|
|
[41]
|
Wang, X., Gao, M., Zhou, S., et al. (2017) Trend in Young Coronary Artery Disease in China from 2010 to 2014: A Retrospective Study of Young Patients 45. BMC Cardiovascular Disorders, 17, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
宁复, 刘森. 超氧化物歧化酶与动脉粥样硬化性疾病[J]. 中国航天医药杂志, 2004, 6(3): 74-75.
|