修改的DY和HS共轭梯度算法及其全局收敛性
Modified DY and HS Conjugate Gradient Algorithms and Ther Global Convergence
DOI: 10.12677/pm.2011.11001, PDF, HTML,  被引量    国家自然科学基金支持
作者: 李向荣:广西大学数学与信息科学学院,南宁
关键词: 共轭梯度方法分下降性全局收敛性
Conjugate Gradient Method; Sufficient Descent Property; Global Convergence;
摘要: Yuan[16]提出了修改的PRP共轭梯度方法,该方法能保证参数 非负且搜索方向在不需要任何线搜索下具有充分下降性。作者也将此技术推广到其它共轭梯度方法中,并给出了修改的公式,但是没有给出具体的收敛性证明。本文的主要工作就是分析修改的DY和HS共轭梯度方法的性质:充分下降性和全局收敛性,同时给出数值检验结果。
Abstract: Yuan[16] proposed a modified PRP conjugate gradient method which can ensure that the scalar holds and the search direction possesses the sufficient descent property without any line search. This technique has been extended to other conjugate gradient methods, but the convergence has been not given. In this paper, our purpose is to analyze the property of DY and HS: sufficient descent property and global convergence, moreover numerical results are shown.
文章引用:李向荣. 修改的DY和HS共轭梯度算法及其全局收敛性[J]. 理论数学, 2011, 1(1): 1-7. http://dx.doi.org/10.12677/pm.2011.11001

参考文献

[1] E. Polak, G. Ribiere. Note sur la xonvergence de directions conjugees. Rev. Francaise informat Recherche Operatinelle 3e Annee, 1969, 16: 35-43.
[2] B. T. Polyak. The conjugate gradient method in extreme problems. USSR Comp Math Math Phys., 1969, 9(4): 94-112.
[3] R. Fletcher, C. Reeves. Function minimization by conjugate gradients. HHHHHComputer JournalHHHHH, 1964, 7(2): 149-154.
[4] R. Fletcher. Practical Method of Optimization. New York: John Wiley & Sons, 1998.
[5] Y. Liu, C. Storey. Efficient generalized conjugate gradient algorithms, part 1: theory. Journal of optimization theory and Application, 1992, 69(1):129-137.
[6] M. R. Hestenes, E. Stiefel. Method of conjugate gradient for solving linear equations. Res. Nat. Bur. Stand., 1952, 49(6): 409-436.
[7] Y. H. Dai, Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 2000, 10(177): 177-182.
[8] Y. Dai, L. Z. Liao. New conjugacy conditions and related nonlinear
[9] conjugate methods. Appl. Math. Optim., 2001, 43(1): 87-101.
[10] W. W. Hager, H. Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 2005, 16(1): 170-192.
[11] W. W. Hager, H. Zhang. Algorithm 851: CGDESENT, A conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software, 2006, 32(1): 113-137.
[12] G. Li, C. Tang, Z. Wei. New conjugacy condition and related new conjugate gradient methods for unconstrained optimization problems. Journal of Computational and Applied Mathemathics, 2007, 202(2): 532-539.
[13] Z. Wei, G. Li, L. Qi. New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. Applied Mathematics and Computation, 2006, 179(2): 407-430.
[14] Z. Wei, G. Li, L. Qi. Global convergence of the PRP conjugate gradient methods with inexact line search for nonconvex unconstrained optimization problems. Mathematics of Computation, 2008, 77(264): 2173-2193.
[15] Z. Wei, S. Yao, L. Lin. The convergence properties of some new conjugate gradient methods. Applied Mathematics and Computation, 2006, 183(2): 1341-1350.
[16] G. L. Yuan. Modified nonlinear conjugate gradient methods with suf-ficient descent property for large-scale optimization problems. Optimization Letters, 2009, 3(1): 11-21.
[17] G. L. Yuan, X. W. Lu. A modified PRP conjugate gradient method. Annals of Operations Research, 2009, 166(1): 73-90.
[18] G. L. Yuan, X. W. Lu, Z. X. Wei. A conjugate gradient method with descent direction for unconstrained optimization. Journal of Computational and Applied Mathematics, 2009, 233(2):519-530.
[19] L. Zhang, W. Zhou, D. Li. A descent modified Polak-Ribiere- Polyak conjugate method and its global convergence. IMA Journal on Numerical Analysis, 2006, 26(4): 629-649.
[20] J. C. Gilbert, J. Nocedal. Global Convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization, 1992, 2(1): 21-42.