|
[1]
|
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612. [Google Scholar] [CrossRef]
|
|
[2]
|
国家卫生健康委员会. 中国卫生健康统计年鉴 2021 [M]. 北京: 中国协和医科大学出版社, 2021.
|
|
[3]
|
Malakar, A.K., Choudhury, D., Halder, B., Paul, P., Uddin, A. and Chakraborty, S. (2019) A Review on Coronary Artery Disease, Its Risk Factors, and Therapeutics. Jour-nal of Cellular Physiology, 234, 16812-16823. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Trudel, X., Brisson, C., Talbot, D., Gilbert-Ouimet, M. and Milot, A. (2021) Long Working Hours and Risk of Recurrent Coronary Events. Journal of the American College of Cardiology, 77, 1616-1625. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rong, S., Snetselaar, L.G., Xu, G., Sun, Y., Liu, B., Wallace, R.B. and Bao, W. (2019) Association of Skipping Breakfast With Cardiovascular and All-Cause Mortality. Journal of the American College of Cardiology, 73, 2025-2032. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Malik, V.S., Li, Y., Pan, A., De Koning, L., Schernhammer, E., Willett, W.C. and Hu, F.B. (2019) Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation, 139, 2113-2125. [Google Scholar] [CrossRef]
|
|
[7]
|
Alpert, J.S. (2023) New Coronary Heart Disease Risk Factors. The American Journal of Medicine, 136, 331-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kaplan, P., Tatarkova, Z., Sivonova, M.K., Racay, P. and Le-hotsky, J. (2020) Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. International Jour-nal of Molecular Sciences, 21, Article 7698. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Habib, S.S., Al-Khlaiwi, T., Almushawah, A., Alsomali, A. and Habib, S.A. (2023) Homocysteine as a Predictor and Prognostic Marker of Atherosclerotic Cardiovascular Disease: A System-atic Review and Meta-Analysis. European Review for Medical and Pharmacological Sciences, 27, 8598-8608.
|
|
[10]
|
Shenoy, V., Mehendale, V., Prabhu, K., Shetty, R. and Rao, P. (2014) Correlation of Serum Homo-cysteine Levels with the Severity of Coronary Artery Disease. Indian Journal of Clinical Biochemistry, 29, 339-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fu, Z., Qian, G., Xue, H., Guo, J., Chen, L., Yang, X., Shen, M., Dong, W. and Chen, Y. (2015) Hyperhomocysteinemia Is an Independent Predictor of Long-Term Clinical Outcomes in Chinese Octogenarians with Acute Coronary Syndrome. Clinical Interventions in Aging, 10, 1467-1474. [Google Scholar] [CrossRef]
|
|
[12]
|
Kamstrup, P.R. (2021) Lipoprotein (a) and Cardiovascular Disease. Clin-ical Chemistry, 67, 154-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Arsenault, B.J. and Kamstrup, P.R. (2022) Lipoprotein (a) and Car-diovascular and Valvular Diseases: A Genetic Epidemiological Perspective. Atherosclerosis, 349, 7-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Duarte Lau, F. and Giugliano, R.P. (2022) Lipoprotein (a) and Its Significance in Cardiovascular Disease: A Review. JAMA Cardiology, 7, 760-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tsimikas, S. and Narula, J. (2022) Lipoprotein (a) and CT An-giography: Novel Insights into High-Risk Plaque Progression. Journal of the American College of Cardiology, 79, 234-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Peng, J., Liu, M.M., Liu, H.H., Xu, R.X., Zhu, C.G., Guo, Y.L., Wu, N.Q., Dong, Q., Cui, C.J. and Li, J.J. (2022) Lipoprotein (a)-Mediated Vascular Calcification: Popula-tion-Based and in vitro Studies. Metabolism, 127, Article ID: 154960. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Packard, C.J., O’Reilly, D.S., Caslake, M.J., McMahon, A.D., Ford, I., Cooney, J., Macphee, C.H., Suckling, K.E., Krishna, M., Wilkinson, F.E., Rumley, A. and Lowe, G.D. (2000) Lipoprotein-Associated Phospholipase A2 as an Independent Predictor of Coronary Heart Disease. The New England Journal of Medicine, 343, 1148-1155. [Google Scholar] [CrossRef]
|
|
[18]
|
Fras, Z., Tršan, J. and Banach, M. (2020) On the Present and Future Role of Lp-PLA2 in Atherosclerosis-Related Cardiovascular Risk Prediction and Management. Archives of Medical Science, 17, 954-964. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Goodchild, T.T., Li, Z. and Lefer, D.J. (2022) Soluble Urokinase Plasminogen Activator Receptor: From Biomarker to Active Participant in Atherosclerosis and Cardiovascular Disease. Journal of Clinical Investigation, 132, e165868. [Google Scholar] [CrossRef]
|
|
[20]
|
Hindy, G., Tyrrell, D.J., Vasbinder, A., Wei, C., Presswalla, F., Wang, H., Blakely, P., Ozel, A.B., Graham, S., Holton, G.H., Dowsett, J., Fahed, A.C., Amadi, K.M., Erne, G.K., Tekmulla, A., Ismail, A., Launius, C., Sotoodehnia, N., Pankow, J.S., Thørner, L.W., Erikstrup, C., Pedersen, O.B., Banasik, K., Bru-nak, S., Ullum, H., Eugen-Olsen, J., Ostrowski, S.R., Haas, M.E., Nielsen, J.B., Lotta, L.A., Engström, G., Melander, O., Orho-Melander, M., Zhao, L., Murthy, V.L., Pinsky, D.J., Willer, C.J., Heckbert, S.R., Reiser, J., Goldstein, D.R., Desch, K.C. and Hayek, S.S. (2022) Increased Soluble Urokinase Plasminogen Activator Levels Modulate Monocyte Function to Promote Atherosclerosis. Journal of Clinical Investigation, 132, e158788. [Google Scholar] [CrossRef]
|
|
[21]
|
Al-Badri, A., Tahhan, A.S., Sabbak, N., Alkhoder, A., Liu, C., Ko, Y.A., Vaccarino, V., Martini, A., Sidoti, A., Goodwin, C., Ghazzal, B., Beshiri, A., Murtagh, G., Mehta, P.K. and Quyyumi, A.A. (2020) Soluble Urokinase-Type Plasminogen Activator Receptor and High-Sensitivity Troponin Levels Predict Outcomes in Nonobstructive Coronary Artery Disease. Journal of the American Heart Association, 9, e015515. [Google Scholar] [CrossRef]
|
|
[22]
|
Walter, J.E., Amrein, M.L.F., Schäfer, I., Zimmermann, T., Lopez-Ayala, P., Boeddinghaus, J., Twerenbold, R., Puelacher, C., Nestelberger, T., Wussler, D., Honegger, U., Ba-dertscher, P., Eugen-Olsen, J., Koechlin, L., Fahrni, G., Jeger, R., Kaiser, C., Zellweger, M. and Mueller, C. (2022) Sol-uble Urokinase Plasminogen Activator Receptor and Functionally Relevant Coronary Artery Disease: A Prospective Co-hort Study. Biomarkers, 27, 278-285. [Google Scholar] [CrossRef]
|
|
[23]
|
Li, C., Zhang, Z., Peng, Y., Gao, H., Wang, Y., Zhao, J. and Pan, C. (2019) Plasma Neutrophil Gelatinase-Associated Lipocalin Levels Are Associated with the Presence and Severity of Coronary Heart Disease. PLOS ONE, 14, e0220841. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xia, M., Zhang, C., Gu, J., Chen, J., Wang, L.C., Lu, Y., Huang, C.Y., He, Y.M. and Yang, X.J. (2018) Impact of Serum Albumin Levels on Long-Term All-Cause, Cardiovascular, and Cardiac Mortality in Patients with First-Onset Acute Myocardial Infarction. Clinica Chimica Acta, 477, 89-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chandrasekhar, J. and Zaman, S. (2020) Associations between C-Reactive Protein, Obesity, Sex, and PCI Outcomes: The Fat of the Matter. JACC: Cardiovascular Interventions, 13, 2893-2895. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Çağdaş, M., Rencüzoğullari, I., Karakoyun, S., Karabağ, Y., Yesin, M., Artaç, I., Iliş, D., Çağdaş, Ö.S., Tezcan, A.H. and Tanboğa, H.I. (2019) Assessment of Relationship Be-tween C-Reactive Protein to Albumin Ratio and Coronary Artery Disease Severity in Patients with Acute Coronary Syn-drome. Angiology, 70, 361-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sabanoglu, C. and Inanc, I.H. (2022) C-Reactive Protein to Al-bumin Ratio Predicts for Severity of Coronary Artery Disease and Ischemia. European Review for Medical and Phar-macological Sciences, 26, 7623-7631.
|
|
[28]
|
Çınar, T., Çağdaş, M., Rencüzoğulları, I., Karakoyun, S., Karabağ, Y., Yesin, M., Sadioğlu Çağdaş, Ö. and Tanboğa, H.İ. (2019) Prognostic Efficacy of C-Reactive Protein/Albumin Ratio in ST Elevation Myocardial Infarction. Scandinavian Cardiovascular Journal, 53, 83-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cipolletta, E., Tata, L.J., Nakafero, G., Avery, A.J., Mamas, M.A. and Abhishek, A. (2022) Association between Gout Flare and Subsequent Cardiovascular Events among Patients with Gout. JAMA, 328, 440-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mahtta, D., Gupta, A., Ramsey, D.J., Rifai, M.A., Mehta, A., Krit-tanawong, C., Lee, M.T., Nasir, K., Samad, Z., Blumenthal, R.S., Jneid, H., Ballantyne, C.M., Petersen, L.A. and Virani, S.S. (2020) Autoimmune Rheumatic Diseases and Premature Atherosclerotic Cardiovascular Disease: An Analysis from the VITAL Registry. The American Journal of Medicine, 133, 1424-1432.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lee, M.T., Mahtta, D., Chen, L., Hussain, A., Al Rifai, M., Sinh, P., Khalid, U., Nasir, K., Ballantyne, C.M., Petersen, L.A. and Virani, S.S. (2021) Premature Atherosclerotic Car-diovascular Disease Risk among Patients with Inflammatory Bowel Disease. The American Journal of Medicine, 134, 1047-1051.E2. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Garshick, M.S., Ward, N.L., Krueger, J.G. and Berger, J.S. (2021) Cardiovascular Risk in Patients with Psoriasis: JACC Review Topic of the Week. Journal of the American Col-lege of Cardiology, 77, 1670-1680. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hamad, R., Penko, J., Kazi, D.S., Coxson, P., Guzman, D., Wei, P.C., Mason, A., Wang, E.A., Goldman, L., Fiscella, K. and Bibbins-Domingo, K. (2020) Association of Low Socioec-onomic Status with Premature Coronary Heart Disease in US Adults. JAMA Cardiology, 5, 899-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rajagopalan, S. and Landrigan, P.J. (2021) Pollution and the Heart. The New England Journal of Medicine, 385, 1881-1892. [Google Scholar] [CrossRef]
|
|
[35]
|
Chen, R., Jiang, Y., Hu, J., Chen, H., Li, H., Meng, X., Ji, J.S., Gao, Y., Wang, W., Liu, C., Fang, W., Yan, H., Chen, J., Wang, W., Xiang, D., Su, X., Yu, B., Wang, Y., Xu, Y., Wang, L., Li, C., Chen, Y., Bell, M.L., Cohen, A.J., Ge, J., Huo, Y. and Kan, H. (2022) Hourly Air Pollutants and Acute Coronary Syndrome Onset in 1.29 Million Patients. Circulation, 145, 1749-1760. [Google Scholar] [CrossRef]
|
|
[36]
|
Manfrini, O., Yoon, J., van der Schaar, M., Kedev, S., Vavlukis, M., Stankovic, G., Scarpone, M., Miličić, D., Vasiljevic, Z., Badimon, L., Cenko, E. and Bugiardini, R. (2020) Sex Differences in Modifiable Risk Factors and Severity of Coronary Artery Disease. Journal of the American Heart Association, 9, e017235. [Google Scholar] [CrossRef]
|
|
[37]
|
Yoon, Y.E., Kim, K.M., Lee, W., Han, J.S., Chun, E.J., Ahn, S., Choi, S.I., Yun, B. and Suh, J.W. (2020) Breast Arterial Calcification Is Associated with the Progression of Coronary Atherosclerosis in Asymptomatic Women: A Preliminary Retrospective Cohort Study. Scientific Reports, 10, Article No. 2755. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kadıoğlu, A. and Bahadır, S. (2022) Breast Arterial Calcifica-tions as an Indicator of Atherosclerotic Cardiovascular Disease: Comparative Analysis of Coronary Computed Tomog-raphy Scoring Systems and Carotid Intima-Media Thickness. Quantitative Imaging in Medicine and Surgery, 12, 457-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bassily, E., Bell, C., Verma, S., Patel, N. and Patel, A. (2019) Significance of Obstetrical History with Future Cardiovascular Disease Risk. The American Journal of Medicine, 132, 567-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Honigberg, M.C., Zekavat, S.M., Aragam, K., Finneran, P., Klarin, D., Bhatt, D.L., Januzzi Jr., J.L., Scott, N.S. and Natarajan, P. (2019) Association of Premature Natural and Sur-gical Menopause with Incident Cardiovascular Disease. JAMA, 322, 2411-2421. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Levine, L.D., Ky, B., Chirinos, J.A., Koshinksi, J., Arany, Z., Riis, V., Elovitz, M.A., Koelper, N. and Lewey, J. (2022) Prospective Evaluation of Cardiovascular Risk 10 Years after a Hy-pertensive Disorder of Pregnancy. Journal of the American College of Cardiology, 79, 2401-2411. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kurth, T., Rist, P.M., Ridker, P.M., Kotler, G., Bubes, V. and Buring, J.E. (2020) Association of Migraine with Aura and Other Risk Factors with Incident Cardiovascular Disease in Women. JAMA, 323, 2281-2289. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Orth-Gomér, K., Deter, H.C., Grün, A.S., Herrmann-Lingen, C., Al-bus, C., Bosbach, A., Ladwig, K.H., Ronel, J., Söllner, W., de Zwaan, M., Petrowski, K., Weber, C. and SPIRR-CAD Study Group (2018) Socioeconomic Factors in Coronary Artery Disease—Results from the SPIRR-CAD Study. Journal of Psychosomatic Research, 105, 125-131. [Google Scholar] [CrossRef] [PubMed]
|