|
[1]
|
Rupam, G., Balaji, O., Sereen, R.T. and Patil, N. (2017) Radiation Therapy-Induced Subacute Intestinal Obstruction. Asian Journal of Pharmaceutical and Clinical Research, 10, 7-8. [Google Scholar] [CrossRef]
|
|
[2]
|
Magro, P.M.H. (2015) Bowel Obstruction Secondary to Ra-diation Enteritis: A Case Report. Revista de gastroenterologia de Mexico, 80, 111-113. [Google Scholar] [CrossRef]
|
|
[3]
|
Shi, C., Zhou, H., Li, X.F. and Cai, Y. (2016) A Retrospective Analysis on Two-Week Short-Course Pre-Operative Radiotherapy in Elderly Patients with Resectable Locally Advanced Rectal Cancer. Scientific Reports, 6, Article No. 37866. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Li, Y., Wang, J., Ma, X., et al. (2016) A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. International Journal of Biological Sciences, 12, 1022-1031. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Burdelya, L.G., Gleiberman, A.S., Toshkov, I., Aygun-Sunar, S., Bapardekar, M., Manderscheid-Kern, P., et al. (2012) Toll-Like Receptor 5 Agonist Protects Mice from Dermatitis and Oral Mucositis Caused by Local Radiation: Implications for Head-and-Neck Cancer Radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 83, 228-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Garg, A.K., Mai, W.Y., McGary, J.E., et al. (2006) Radiation Proctopathy in the Treatment of Prostate Cancer. International Journal of Radiation Oncology, Biology, Physics, 66, 1294-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vanneste, B.G., Van De Voorde, L., de Ridder, R.J., et al. (2015) Chronic Radiation Proctitis: Tricks to Prevent and Treat. International Journal of Colorectal Disease, 30, 1293-1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nelamangala Ramakrishnaiah, V.P. and Krish-namachari, S. (2016) Chronic Haemorrhagic Radiation Proctitis: A Review. World Journal of Gastrointestinal Surgery, 8, 483-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fujii, T., Hasegawa, R.T., Sitoh, Y., et al. (2002) Chro-moscopy during Colonoscopy. Endoscopy, 33, 1036-1041. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Colorectal Surgery Group, Branch of Surgery, Chinese Medical As-sociation, Colorectal Surgeon Committee, Surgeon Branch, Chinese Medical Doctor Association, Colorectal Cancer Pro-fessional Committee and Anti-Cancer Association of China (2021) Chinese Expert Consensus on Multidisci Plinary Di-agnosis and Treatment of Radiation Rectal Injury (2021 Edition). Chinese Journal of Gastrointestinal Surgery, 24, 937-949. (In Chinese)
|
|
[11]
|
Wang, L. and Wang, J. (2018) Chinese Consensus on Diagnosis and Treatment of Radiation Proctitis (2018). Chinese Journal of Gastrointestinal Surgery, 21, 1321-1336.
|
|
[12]
|
Gami, B., Harrington, K., Blake, P., et al. (2003) How Patients Manage Gastrointestinal Symptoms after Pelvic Radiotherapy. Alimentary Pharmacology & Therapeutics, 18, 987-994. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Travis, E.L. (2001) Organiza-tional Response of Normal Tissues to Irradiation. Seminars in Radiation Oncology, 11, 184-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Abdullaev, S.A., Glukhov, S.I. and Gaziev, A.I. (2021) Radioprotec-tive and Radiomitigative Effects of Melatonin in Tissues with Different Proliferative Activity. Antioxidants, 10, Article 1885. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Novoselova, E.G., Sharapov, M.G., Lunin, S.M., Parfenyuk, S.B., Khrenov, M.O., Mubarakshina, E.K., Kuzekova, A.A., Novoselova, T.V., Goncharov, R.G. and Glushkova, O.V. (2021) Peroxiredoxin 6 Applied after Exposure Attenuates Damaging Effects of X-Ray Radiation in 3T3 Mouse Fibro-blasts. Antioxidants, 10, Article 1951. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Obrador, E., Salvador, R., Villaescusa, J.I., Soriano, J.M., Estrela, J.M. and Montoro, A. (2020) Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines, 8, Article 461. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Reisz, J.A., Bansal, N., Qian, J., Zhao, W. and Furdui, C.M. (2014) Effects of Ionizing Radiation on Biological Molecules-Mechanisms of Damage and Emerging Methods of Detec-tion. Antioxidants & Redox Signaling, 21, 260-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bourguignon, M.H., Gisone, P.A., Perez, M.R., et al. (2005) Genetic and Epigenetic Features in Radiation Sensitivity Part I: Cell Signalling in Radiation Response. European Journal of Nu-clear Medicine and Molecular Imaging, 32, 229-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
蒋满荣. DNA损伤对哺乳动物细胞周期和凋亡的影响[D]: [博士学位论文]. 上海: 中国科学院研究生院, 2006.
|
|
[20]
|
Kastan, M.B. and Lim, D.S. (2000) The Many Substrates and Functions of ATM. Nature Reviews Molecular Cell Biology, 1, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zou, L. and Elledge, S.J. (2003) Sensing DNA Damage through ATRIP Recognition of RPA-ssDNA Complexes. Science, 300, 1542-1548. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hehnly, H. and Doxsey, S. (2012) Polarity Sets the Stage for Cyto-kinesis. Molecular Biology of the Cell, 23, 7-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Reuter, S., Gupta, S.C., Chaturvedi, M.M. and Aggarwal, B.B. (2010) Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radical Biology and Medicine, 49, 1603-1616. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pi, J.B., Zhang, Q., Fu, J.Q., et al. (2010) ROS Signaling, Oxidative Stress and Nrf2 in Pancreatic β-Cell Function. Toxicology and Applied Pharmacology, 244, 77-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kanninen, K., White, A.R., Koistinaho, J., et al. (2011) Targeting Glycogen Synthase Kinase-3 for Therapeutic Benefit against Oxidative Stress in Alzheimer’s Disease: Involvement of the Nrf2-ARE Pathway. International Journal of Alzheimer’s Disease, 2011, Article ID: 985085. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kawamura, K., Qi, F. and Kobayashi, J. (2018) Potential Relationship between the Biological Effects of Low-Dose Irradiation and Mitochondrial ROS Production. Journal of Radiation Re-search, 59, i91-i97. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Spitz, D.R., Azzam, E.I., Li, J.J. and Gius, D. (2004) Metabolic Oxida-tion/Reduction Reactions and Cellular Responses to Ionizing Radiation: A Unifying Concept in Stress Response Biology. Cancer and Metastasis Reviews, 23, 311-322. [Google Scholar] [CrossRef]
|
|
[28]
|
Denham, J.W. and Hauer-Jensen, M. (2002) The Ra-diotherapeutic Injury—A Complex ‘Wound’. Radiotherapy & Oncology, 63, 129-145. [Google Scholar] [CrossRef]
|
|
[29]
|
Williams, J.P., Johnston, C.J. and Finkelstein, J.N. (2010) Treatment for Radiation-Induced Pulmonary Late Effects: Spoiled for Choice or Looking in the Wrong Direction? Cur-rent Drug Targets, 11, 1386-1394. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
朱茂祥, 杨陟华, 龚诒芬, 等. 辐射诱发细胞内活性氧增高与DNA氧化损伤研究[J]. 辐射研究与辐射工艺学报, 2001, 19(4): 270-274. [Google Scholar] [CrossRef]
|
|
[31]
|
Rowe, L.A., Degtyareva, N. and Doetsch, P.W. (2008) DNA Damage-Induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces cerevisiae. Free Radical Bi-ology and Medicine, 45, 1167-1177. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
冉茂良, 高环, 尹杰, 等. 氧化应激与DNA损伤[J]. 动物营养学报, 2013, 25(10): 2238-2245. [Google Scholar] [CrossRef]
|
|
[33]
|
Brigelius-Flohé, R. and Flohé, L. (2011) Basic Princi-ples and Emerging Concepts in the Redox Control of Transcription Factors. Antioxidants & Redox Signaling, 15, 2335-2381. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Harb, A.H., Abou Fadel, C. and Sharara, A.I. (2014) Radi-ation Enteritis. Current Gastroenterology Reports, 16, Article No. 383. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rehailia-Blanchard, A., He, M.Y., Rancoule, C., et al. (2019) Physiopathology and Pharmacological Perspectives in the Treatment of Radiation Enteritis. Cancer/Radiothérapie, 23, 240-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
王中秋, 王清鑫, 巩琳琳, 等. 放射性肠炎患者肠道菌群的变化及其与炎症反应的关系[J]. 中国肿瘤临床, 2021, 48(6): 275-282.
|
|
[37]
|
Gerassy-Vainberg, S., Blatt, A., Danin-Poleg, Y., Gershovich, K., Sabo, E., Nevelsky, A., Daniel, S., Dahan, A., Ziv, O., Dheer, R., Abreu, M.T., Koren, O., Kashi, Y. and Chowers, Y. (2018) Radiation Induces Proinflammatory Dysbiosis: Transmission of Inflammatory Susceptibility by Host Cytokine Induction. Gut, 67, 97-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
陈晓莉, 饶辉, 郎春辉, 等. 益生菌联合益生元预防宫颈癌患者急性放射性肠炎的研究[J]. 肿瘤代谢与营养电子杂志, 2022, 9(3): 340-344. [Google Scholar] [CrossRef]
|
|
[39]
|
Zhang, A.L., Lu, P., Wang, M.H., et al. (2020) Lipocalin-2 as a Marker of Inflammation and Decreased Adaptation in Short Bowel Syndrome. Journal of the American College of Surgeons, 231, S205. [Google Scholar] [CrossRef]
|
|
[40]
|
Shao, F., Xin, F.Z., Yang, C.G., Yang, D.G., Mi, Y.T., Yu, J.X., et al. (2014) The Impact of Microbial Immune Enteral Nutrition on the Patients with Acute Radiation Enteritis in Bowel Function and Immune Status. Cell Biochemistry and Biophysics, 69, 357-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Seal, M., Naito, Y., Barreto, R., Lorenzetti, A., Safran, P. and Marotta, F. (2007) Experimental Radiotherapy-Induced Enteritis: A Probiotic Interventional Study. Journal of Digestive Diseases, 8, 143-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chitapanarux, I., Chitapanarux, T., Traisathit, P., Kudum-pee, S., Tharavichitkul, E. and Lorvidhaya, V. (2010) Randomized Controlled Trial of Live Lactobacillus Acidophilus plus Bifidobacterium Bifidum in Prophylaxis of Diarrhea during Radiotherapy in Cervical Cancer Patients. Radiation Oncology, 5, Article No. 31. [Google Scholar] [CrossRef]
|
|
[43]
|
Yan, F., Cao, H., Cover, T.L., Whitehead, R., Washington, M.K. and Polk, D.B. (2007) Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth. Gastroenterology, 132, 562-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sharma, A., Rath, G.K., Chaudhary, S.P., Thakar, A., Mohanti, B.K. and Bahadur, S. (2012) Lactobacillus brevis CD2 Lozenges Reduce Radiation- and Chemotherapy-Induced Mu-cositis in Patients with Head and Neck Cancer: A Randomized Double-Blind Placebo-Controlled Study. European Jour-nal of Cancer, 48, 875-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Quispe-Tintaya, W., Chandra, D., Jahangir, A., Harris, M., Casadevall, A., Dadachova, E., et al. (2013) Nontoxic Radioactive Listeriaat Is a Highly Effective Therapy against Meta-static Pancreatic Cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 8668-8673. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chandra, D., Selvanesan, B.C., Yuan, Z., Libutti, S.K., Koba, W., Beck, A., et al. (2017) 32-Phosphorus Selectively Delivered by Listeria to Pancreatic Cancer Demonstrates a Strong Therapeutic Effect. Oncotarget, 8, 20729-20740. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ji, C., Wu, M., Zou, J., Fu, J., Chen, H., Li, W. and Wu, X. (2023) Protection of γ-Amino Butyric Acid on Radiation Induced Intestinal Injury in Mice. Molecular Nutrition & Food Re-search, 67, e2200522. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kawamoto, T. and Sasai, K. (2023) Edaravone Exerts Protective Ef-fects on Mice Intestinal Injury without Interfering with the Anti-Tumor Effects of Radiation. Current Issues in Molecular Biology, 45, 5362-5372. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Liu, L., Xiao, N. and Liang, J. (2023) Comparative Efficacy of Oral Drugs for Chronic Radiation Proctitis—A Systematic Review. Systematic Reviews, 12, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
侯继院, 单国用, 龚哲, 等. 黄芪多糖对放射性肠炎大鼠肠黏膜损伤的修复作用研究[J]. 广州中医药大学学报, 2022, 39(7): 1630-1636. [Google Scholar] [CrossRef]
|
|
[51]
|
Guo, J., Zhao, Z., Shang, Z.F., et al. (2023) Nanodrugs with Intrinsic Radioprotective Exertion: Turning the Double- Edged Sword into a Single-Edged Knife. Exploration, 3, Article ID: 20220119. [Google Scholar] [CrossRef]
|
|
[52]
|
Fang, Z.Q., Lv, Y.C., Zhang, H.R., He, Y.X., Gao, H.Q., Chen, C.X., Wang, D.Z., Chen, P.H., Tang, S.J., Li, J.J., Qiu, Z.H., Shi, X.A., Chen, L.W., Yang, J.M. and Chen, X.S. (2023) A Multifunctional Hydrogel Loaded with Two Nanoagents Improves the Pathological Microenviron-ment Associated with Radiation Combined with Skin Wounds. Acta Biomaterialia, 159, 111-127. [Google Scholar] [CrossRef] [PubMed]
|