血源性生物标志物预测肝硬化预后研究进展
Research Progress of Blood-Derived Biomarkers Predicting Prognosis of Liver Cirrhosis
DOI: 10.12677/ACM.2023.13122775, PDF, HTML, XML,   
作者: 胡晓丽, 文雅冰:新疆医科大学研究生院,新疆 乌鲁木齐;新疆军区总医院消化科,新疆 乌鲁木齐;孙金山:新疆军区总医院消化科,新疆 乌鲁木齐
关键词: 肝硬化预测血源性生物标志物Liver Cirrhosis Predictive Blood-Derived Biomarkers
摘要: 肝硬化(Liver Cirrhosis, LC)作为大多数慢性肝病(Chronic Liver Disease, CLD)的终末期,其死亡率较高,因此评估LC患者的预后并提供精确管理对降低死亡风险至关重要。目前已有多种评分系统用于评估LC患者的预后,但因其侵入性或主观性影响了评估的准确度。近年来,研究人员发现,血源性生物标志物对LC患者的预后有一定的预测价值。因其标本采集简单、无创并且可重复,其有望成为预测LC预后的可靠指标。本文主要对血源性生物标志物在预测LC预后功能中的作用做一综述。
Abstract: As the end stage of most chronic liver diseases (LC), cirrhosis has a high mortality rate, so assessing the prognosis of patients with chronic liver disease (CLD) and providing precise management is es-sential to reduce the risk of death. A variety of scoring systems have been used to evaluate the prognosis of patients with LC, but their invasive or subjective nature has affected the accuracy of the assessment. In recent years, researchers have found that blood-derived biomarkers have some predictive value for the prognosis of LC patients. Because of its simple specimen collection, non-invasive and repeatable, it is expected to be a reliable indicator for predicting the prognosis of LC. This review focuses on the role of blood-derived biomarkers in predicting the prognosis of LC.
文章引用:胡晓丽, 文雅冰, 孙金山. 血源性生物标志物预测肝硬化预后研究进展[J]. 临床医学进展, 2023, 13(12): 19716-19724. https://doi.org/10.12677/ACM.2023.13122775

1. 引言

生物标志物是描述个体生理状态的相关指标,因为从血液中取样相对容易且侵入性较小,所以大部分生物标志物是通过血液学检查而得到。从血液中取样相对容易且侵入性较小,血液中的生物标志物包括蛋白质、代谢废物、核酸和血细胞等。最新研究发现血液生物标志物可用于各种疾病的分层,具有高敏感性和特异性,可用于早期诊断、初始风险评估、治疗方案选择以及预后预测等 ‎[1] 。近期研究表明,血源性生物标志物在预测LC预后中发挥重要作用 ‎[2] - ‎[7] 。与Child-Pugh评分和终末期肝病模型MELD相比,血源性生物标志物具有客观性且应用范围广的特点,这将更有利于临床应用。本文首先综述了LC并发症的预后生物标志物,其次,重点概括了最新相关评分对于LC的预后预测。

2. LC并发症的预后生物标志物

2.1. 食管胃底静脉曲张破裂出血

食管胃底静脉曲张破裂出血(Esophagogastric Variceal Bleeding, EGVB)是LC失代偿期常见的并发症之一,首次发病病死率达25%~50% ‎[8] 。从理论上讲,LC患者血小板计数(Platelet, PLT)越低,其出血风险越高,预后越差,但尚无研究支持这一观点。有研究表明,在四年观察期内PLT计数不是大出血的危险因素,也不是LC患者存活率的预测因子 ‎[9] ‎[10] 。Kim ‎[11] 等发现,P2/MS (PLT2/单核细胞百分比 × 分段中性粒细胞百分比)与乙型肝炎病毒所致LC患者的食管静脉曲张呈负相关,P2/MS ≥ 25时,患者发生EGVB的风险较低。支链氨基酸是肌肉中的能量底物,LC患者通常伴有营养状况紊乱,相关研究表明,LC患者支链氨基酸水平较低,但芳香族氨基酸水平较高 ‎[12] ‎[13] 。Ishikawa ‎[2] 等计算了530名LC患者支链氨基酸与芳香族氨基酸的比率,发现比率< 4的患者更容易发生食管胃底静脉曲张恶化、死亡、肝细胞癌和肝衰竭。EGVB主要是由于门静脉压力过高而导致对血管壁压力过大,最终引起血管破裂出血。LC患者体内维生素D水平低下,且有研究表明,维生素D水平降低与患者血管发生破裂出血密切相关。程静等 ‎[14] 研究显示,维生素D可活化肝星型细胞,促进肝内微血管收缩,从而起到调节肝血流动力学的作用。25-(OH) D3是维生素D的羟化后形式,活性维生素D可抑制肝星状细胞活化,故25-(OH) D3水平降低可导致活化的肝星状细胞增多,继而引发氢离子浓度增高,最终造成EGVB [15] [16] 。

2.2. 骨骼肌营养不良

骨骼肌营养不良是指肌肉质量下降、肌肉功能障碍为特征,可继发于LC [17] 。目前LC患者骨骼肌营养不良患病率在23%~60%之间 [18] 。引起LC患者骨骼肌营养不良的原因包括激素变化、肌肉损失增加、新陈代谢障碍、细胞信号转导变化等 ‎[19] 。虽然骨骼肌营养不良已被证实是LC的一个预后标志,很少有研究直接说明性别对肌肉参数的影响,对老年人群的研究发现,虽然老年妇女肌肉丧失的频率较低,但由于肌肉质量下降更快,她们的死亡率明显高于男性 ‎[20] ‎[21] 。同时,由于下丘脑–垂体–性腺轴被破坏 ‎[22] ,睾酮水平也被证明与LC患者的肌肉质量有关 ‎[3] ,LC时体内雌激素增多,通过负反馈机制抑制垂体前叶分泌功能,从而影响垂体–性腺轴的功能,导致雄激素减少。睾酮水平随着男性肝病严重程度的增加而下降,在高达90%的LC患者中明显降低。因此,在老年人群中,由于男性睾酮水平降低幅度更大,所以老年男性肌肉减少速度比女性更快 ‎[23] ‎[24] 。此外,在原发性胆管炎导致的LC患者中,由于胆汁淤积致胆红素和胆汁酸水平升高,导致骨形成减少和骨吸收增加 ‎[25] ,减少了人原始成骨细胞以及骨样细胞的分化和矿化,加快细胞凋亡 ‎[26] 。

2.3. 自发性细菌性腹膜炎

自发性细菌性腹膜炎是终末期肝病患者死亡的主要原因之一,炎症介质参与了其发生与发展过程。核苷酸结合寡聚化结构域样受体蛋白3 (Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3, NLRP3)炎性小体是一种重要的促炎因子,其主要由NLRP3与半胱氨酸蛋白酶1 (Caspase-1)组成,NLRP3是一种胞质模式识别受体,分布于肝实质细胞和肺实质细胞,Caspase-1是一种炎性蛋白酶,主要通过形成炎性小体复合物来产生并激活,其参与促炎因子白细胞介素成熟和释放过程,NLRP3炎性小体活化后可释放大量白细胞介素,并激活Caspase-1凋亡通路,放大炎症反应 ‎[6] ‎[27] 。近期,冯冬霞等 [28] 测量了65名LC并发自发性细菌性腹膜炎患者NLRP3和Caspase-1水平,结果显示应用NLRP3联合Caspase-1水平预测患者预后的AUC为0.916,(SE95% CI) = 0.043(0.831~0.999)。主要是由于NLRP3和Caspase-1水平异常可导致肝脏上皮细胞线粒体损伤和线粒体膜完整性破坏,并可促进局部炎性介质释放,加剧炎性细胞对肝脏上皮组织的损害,进一步促进肝脏上皮细胞的焦亡和坏死 ‎[29] 。肝脏作为进行生物合成、转化和分解的重要器官,研究发现,维生素D不仅可以调节钙和磷的平衡,而且可以作为一种安全类固醇激素,保护肠道屏障并防止细菌易位,在肠道上皮细胞防御感染性病原体方面发挥抗炎作用 ‎[30] 。一项前瞻性研究测定了135例患者的血清25-(OH) D3水平,发现在有肝性脑病(P = 0.02)和自发性细菌性腹膜炎(P = 0.04)并发症的患者中,LC的严重程度(Child-Pugh评分)与血清25-(OH) D3的低水平有关 ‎[31] 。荟萃分析表明,LC自发性腹膜炎患者的维生素D水平较低,维生素D缺乏者自发性腹膜炎发生率较高 ‎[32] 。因此,维生素D可能是LC患者自发性腹膜炎的重要保护因素。

2.4. 急性肾损伤

血清胱抑素C是一种半胱氨酸蛋白酶的低分子内源性抑制物,与血肌酐不同,它不易受年龄、性别、胆红素水平等因素的影响,成为LC患者肾功能的重要标志 ‎[33] 。血管生成素2是一种内皮生长因子,与酪氨酸激酶受体Tie2胞外区结合,主要表达于内皮细胞 ‎[34] 。在血管成熟和炎症反应过程中发挥关键作用,在涉及肾脏的全身炎症条件下具有预测价值,近期一项研究表明,胱抑素C在LC患者中可以有效预测急性肾损伤(P < 0.001),当≤ 179.7 pg/ml时是死亡的独立预测因素,而血管生成素2是死亡率的独立预测因子 ‎[33] 。此外,中性粒细胞明胶酶相关脂钙蛋白(Neutrophil Gelatinase-Associated Lipocalin, NGAL)是一种由178个氨基酸残基多肽链糖蛋白,由于其分子量小,可以在血液及尿液中检测到。它具有多种生物学功能,如胚胎发育、细胞分化、炎症和免疫反应、细胞凋亡、信号转导、肿瘤形成、侵袭和转移等 ‎[35] 。近年来,一些研究发现,NGAL是一种新的敏感生物标志物,对LC患者的肾损伤具有预后价值。Gungor等 ‎[7] 报道血浆NGAL (pNGAL)具有预测肝肾综合征患者LC结局的潜在能力:pNGAL > 289.6 μg/L的患者6个月随访期生存时间较短,AUROC高于CTP评分(0.795)、MELD-Na评分(0.807)、尿NGAL (0.686),预测死亡率的敏感性83.7%,特异性72.2%。此外,一项观察性研究表明,血清促甲状腺激素水平与乙肝病毒慢性肝病急性衰竭(Acute Failure of Chronic Liver Disease, ACLF)患者的生存期显著相关,对预测患者30天和90天生存期有一定价值 ‎[36] 。

2.5. 其它

晚期慢性肝病(Advanced Chronic Liver Disease, ACLD)患者可能存在多种循环功能障碍的表现,如增加肝内血管阻力、减少门静脉血流量、降低全身血管阻力等 ‎[37] ‎[38] ,这些可以激活神经激素系统进行反馈调节,使抗利尿激素异常升高 ‎[39] [40] 。作为疾病进展的生物标志物,LC患者的抗利尿激素水平增高被认为是预后不良的预测因子 ‎[41] 。抗利尿激素由于半衰期较短,血液水平难以定量分析,降钠肽前体C端肽是一种含有抗利尿激素前体C端,由39个氨基酸组成,是抗利尿激素释放的有效替代标记物 ‎[42] ‎[43] 。LC患者抗利尿激素水平升高加重了血管收缩、体液潴留及低钠血症,这些都是影响LC患者预后的危险因素 ‎[44] 。一项荟萃分析表明,CLD患者血清降钠肽前体C端肽其水平升高可能导致患者预后不良,如门脉高压引起的胃肠道出血、肝肾综合征、肝性脑病和大量腹水 ‎[45] 。此外,研究发现,LC患者存在肾上腺功能减退,一项研究调查了不同临床阶段的垂体–肾上腺轴和ACLD稳定期患者血清皮质醇水平,表明随着LC的加重,垂体–肾上腺轴逐渐受到抑制,导致血清皮质醇水平严重降低,较低的血清总皮质醇是细菌感染、ACLF进一步失代偿和肝脏相关死亡的独立危险因素 ‎[46] 。以多器官衰竭为特征的ACLF是LC急性失代偿期患者的主要死亡原因,ACLF患者90天时的死亡率约为50% ‎[47] 。Piano等 ‎[48] 对466名LC门诊患者进行了随访,发现基线血红蛋白(HR = 0.07)是预测一年ACLF发展的独立预后生物标志物。门静脉血栓形成是LC患者常见并发症,其形成可能影响肝脏功能、产生腹水以及食管胃底静脉曲张恶化。血浆抗凝血酶(Plasma Antithrombin, AT)-III是一种由肝脏产生的凝血调节剂,肝功能受损时可导致AT-III水平下降。一项包括75例LC患者合并门静脉高压症患者的回顾性研究显示:低血浆AT-III水平(< 54.0%)的预后明显差于高水平,在Child-Pugh A/B级或ALBI评分1/2级的患者中,低AT-III (< 54.0%)也与显著的预后不良相关(P < 0.0001),多因素分析显示,低血浆AT-III水平(< 54.0%)是预后不良的独立预后因素,低血浆AT-III水平可能与死亡率有关,特别是与肝功能相关的死亡,与肝功能无关 ‎[49] ,同时在LC患者中低血浆AT-III水平与肝切除术后门静脉血栓形成显著相关 ‎[50] 。

3. 评分系统

3.1. CHINAT-CD4评分

失代偿期乙型LC患者容易并发多种并发症,ACLF是其中之一。MELD和MELD-Na目前已被用于评估严重肝病患者的预后,但MELD和MELD-Na没有考虑呼吸衰竭、循环衰竭和脑功能障碍,因此没有优先考虑在ACLF患者中使用 ‎[51] 。Wang等 ‎[52] 人报道称,乙肝病毒相关性ACLF患者存在免疫系统功能障碍,T细胞可以预测患者的预后。最新研究表明,CHINAT-CD4评分(0.320 × ln肌酐+0.668×肝性脑病评分 + 0.745 × ln国际标准化比值(International Normalized Ratio, INR) + 0.476 × ln中性粒细胞计数 + 0.251 × ln天冬氨酸氨基转移酶(Aspartate Aminotransferase, AST) + 0.411 × ln总胆红素−0.605 × ln CD4+ T细胞,其中非肝性脑病评分 = 1;轻度肝性脑病评分2 (1~2级);严重肝性脑病评分3 (3~4级)),这些因素中,AST、总胆红素、肌酐、INR和肝性脑病分别与肝、肾功能衰竭、凝血和脑功能障碍有关 ‎[53] 。Zhang等 ‎[54] 人发现,在乙肝相关ACLF患者中,产生白介素−17的CD4+ T细胞随着肝损害的严重程度而增加。抗病毒治疗、血浆置换、肝细胞透析疗法等治疗可改变ACLF患者外周血中CD4+ T细胞的数量,此外,抗病毒治疗可能会提高AST水平,从而改变评分 ‎[53] 。CHINAT-CD4评分可以准确预测ACLF患者的预后,一方面对预测乙肝相关ACLF患者28~90天死亡率具有最高的预后价值,同时有助于预测非乙肝相关ACLF的严重程度,而且可用于帮助肝移植决策并指导患者进行治疗,但是需要在前瞻性研究或多中心大样本研究中验证。

3.2. Chess-Alarm评分

虽然代偿性ACLD可以通过肝活检、食管胃十二指肠镜或肝静脉压力梯度进行准确诊断,但这些都是有创的,使用瞬时弹性成像的肝脏硬度测量(Liver Hardness Measurement, LSM)为代偿性ACLD提供了一种非侵入性诊断方法 ‎[55] 。研究发现,超过25 kPa的肝硬度是识别代偿性ACLD患者的最佳分界点 ‎[56] ‎[57] 。Chess-Alarm评分(0.033 × Age − 0.598 × 性别 − 0.018 × PLT + 0.032 × LSM)作为一种非侵入性分级工具来预测和个体化代偿性晚期慢性肝病患者肝脏失代偿的风险。通过将年龄、血小板和性别纳入LSM,该评分能够准确预测5年后的肝脏失代偿风险(tAUC: 0.86 [95% CI: 0.79~0.94]; PPV: 40% [95% CI: 26~55%]) ‎[55] 。首先该评分可以排除有肝脏失代偿事件和死亡风险患者的阴性预测值,而且可以识别发展为肝脏失代偿或死亡的高风险患者,进而早期进行预防治疗。但该评分无法验证与LC相关并发症诊断的准确性,同时病态肥胖非酒精性脂肪性LC患者的代表性不足,需要进一步验证此类患者的Chess-Alarm评分。

3.3. IALBI评分

白蛋白相关评分被认为是Child-Turcotte-Pugh评分和MELD评分的替代评分,可用于预测CLD、肝功能衰竭和肝癌患者的预后。INR升高反映了肝脏储备能力下降和凝血功能紊乱,在肝衰竭患者中,INR升高与预后不良有关,是慢性丙型肝炎肝纤维化的独立预测因子,并预测丙型肝炎诱发的LC中严重的食管静脉曲张 ‎[58] 。胃镜治疗是EGVB的有效治疗方法,而胃镜治疗后再出血严重影响患者的预后最新研究表明,用INR和白蛋白–胆红素(ALBI)分级作为IALBI评分(log10胆红素 × 0.66 + 白蛋白 × −0.085,其中1级 ≤−2.60;−2.60 < 2级 ≤−1.39;3级 > −1.39),可以预测LC患者经内窥镜治疗后的再出血风险,IALBI预测再出血的AUC在1个月、3个月和12个月时分别为0.739、0.697和0.620。在多变量分析中,IALBI是EGVB患者经内窥镜治疗后再出血的独立危险因素 ‎[59] 。同时,时间依赖的ROC曲线显示,在所有与白蛋白相关的评分中,IALBI分级的AUC在所有时间点均高于ALBI、改良ALBI、血小板ALBI和ALBI-FIB4分级 ‎[59] ,这表明该评分对早期出血风险有较高的预测能力。

3.4. APRI评分

PLT数量和功能的改变在肝病中很常见,它们可以作为评估慢性和急性肝病进展的标志物,包括LC、急性肝功能衰竭和肝细胞癌 ‎[60] 。在LC患者的研究中,PLT降低与门静脉高压症的存在有确凿的相关性,并代表了终末期肝病患者的预后参数 ‎[10] ‎[61] 。此外,AST作为评估肝脏功能的重要指标,多因素分析发现APRI评分(AST/PLT),与失代偿期稳定性LC患者的生存显著相关,APRI评分不仅可以预测纤维化和LC ‎[62] ‎[63] ,还可作为乙肝相关失代偿性LC住院患者死亡率的预测因子 ‎[64] 。该研究未进一步评估所提出的基于PLT的标记物在失代偿性LC中的预后作用,此外,尚无病理生理学基础来支持评分与患者预后的关联。

4. 总结

血源性生物标志物因其独特的生理学特性,是目前预测LC预后最有潜力的方法。血源性生物标志物提供了LC的预后信息,是客观的衡量指标,与LC患者的不同预后方面有关,包括短期和长期生存率、并发症发展和疾病进展。然而,在应用于临床实践中还有待更多研究证实其临床价值,还需要标准化的检测方法,以及采用大样本前瞻性研究与现有评分(Child-Pugh评分和MELD评分)相比较验证其有效性。而且随着愈来愈多的体液生物标志物发现,在预测LC预后研究中,可通过不同生物标志物的组合促进LC患者的精确管理,制定个体化治疗方案。相信随着医学、生物科学的发展,血源性生物标志物在预测LC预后方面必将有更加广泛的临床应用前景。

参考文献

[1] Chavez-Pineda, O.G., Rodriguez-Moncayo, R., Cedillo-Alcantar, D.F., et al. (2022) Microfluidic Systems for the Analy-sis of Blood-Derived Molecular Biomarkers. Electrophoresis, 43, 1667-1700.
https://doi.org/10.1002/elps.202200067
[2] Ishikawa, T., Imai, M., Ko, M., et al. (2017) Evaluation of the Branched-Chain Amino Acid-to-Tyrosine Ratio Prior to Treatment as a Prognostic Predictor in Patients with Liver Cir-rhosis. Oncotarget, 8, 79480-79490.
https://doi.org/10.18632/oncotarget.18447
[3] Sinclair, M., Grossmann, M., Angus, P.W., et al. (2016) Low Tes-tosterone as a Better Predictor of Mortality than Sarcopenia in Men with Advanced Liver Disease. Journal of Gastroen-terology and Hepatology, 31, 661-667.
https://doi.org/10.1111/jgh.13182
[4] Zhang, L., Mosoian, A., Schwartz, M.E., et al. (2019) HIV Infection Mod-ulates IL-1β Response to LPS Stimulation through a TLR4-NLRP3 Pathway in Human Liver Macrophages. Journal of Leukocyte Biology, 105, 783-795.
https://doi.org/10.1002/JLB.4A1018-381R
[5] Dumont, A., de Rosny, C., Kieu, T.L., et al. (2019) Docosahex-aenoic Acid Inhibits Both NLRP3 Inflammasome Assembly and JNK-Mediated Mature IL-1β Secretion in 5-Fluorouracil-Treated MDSC: Implication in Cancer Treatment. Cell Death & Disease, 10, Article No. 485.
https://doi.org/10.1038/s41419-019-1723-x
[6] Xie, W.H., Ding, J., Xie, X.X., et al. (2020) Hepatitis B Virus X Protein Promotes Liver Cell Pyroptosis under Oxidative Stress through NLRP3 Inflammasome Activation. Inflammation Research, 69, 683-696.
https://doi.org/10.1007/s00011-020-01351-z
[7] Gungor, G., Ataseven, H., Demir, A., et al. (2014) Neutrophil Gelatinase-Associated Lipocalin in Prediction of Mortality in Patients with Hepatorenal Syndrome: A Prospective Ob-servational Study. Liver International, 34, 49-57.
https://doi.org/10.1111/liv.12232
[8] Weichselbaum, L., Lepida, A., Marot, A., et al. (2022) Salvage Transjugular Intrahepatic Portosystemic Shunt in Patients with Cirrhosis and Refractory Variceal Bleeding: A Systematic Review with Meta-Analysis. United European Gastroenterology Journal, 10, 874-887.
https://doi.org/10.1002/ueg2.12300
[9] Basili, S., Raparelli, V., Napoleone, L., et al. (2018) Platelet Count Does Not Predict Bleeding in Cirrhotic Patients: Results from the PRO-LIVER Study. American Journal of Gastroenterology, 113, 368-375.
https://doi.org/10.1038/ajg.2017.457
[10] Giannini, E.G., Moscatelli, A., Brunacci, M., et al. (2016) Prognostic Role of Mean Platelet Volume in Patients with Cirrhosis. Digestive and Liver Disease, 48, 409-413.
https://doi.org/10.1016/j.dld.2015.10.018
[11] Kim, B.K., Han, K.H., Park, J.Y., et al. (2010) Prospective Valida-tion of P2/MS Noninvasive Index Using Complete Blood Counts for Detecting Oesophageal Varices in B-Viral Cirrho-sis. Liver International, 30, 860-866.
https://doi.org/10.1111/j.1478-3231.2010.02260.x
[12] Holecek, M. (2015) Ammonia and Amino Acid Profiles in Liver Cirrhosis: Effects of Variables Leading to Hepatic Encephalopathy. Nutrition, 31, 14-20.
https://doi.org/10.1016/j.nut.2014.03.016
[13] Moriwaki, H., Miwa, Y., Tajika, M., et al. (2004) Branched-Chain Amino Acids as a Protein- and Energy-Source in Liver Cirrhosis. Biochemical and Biophysical Research Communica-tions, 313, 405-409.
https://doi.org/10.1016/j.bbrc.2003.07.016
[14] 程静, 徐路, 彭素琼. 肝血流超声参数联合外周血vWF-Ag对肝硬化患者食管静脉曲张出血的预测价值[J]. 肝脏, 2020, 25(3): 260-263.
[15] 田勇, 张强, 梁海明, 等. 肝血流超声参数联合血清25羟维生素D3在肝硬化患者食管胃底静脉曲张破裂出血中的预测价值[J]. 医学影像学杂志, 2022, 32(11): 1935-1939.
[16] 赵明远, 武希润, 李红霞, 等. 血清25羟维生素D3的水平与肝硬化食管静脉曲张破裂出血的相关性[J]. 中华肝脏病杂志, 2019, 27(5): 358-362.
[17] Son, S.W., Song, D.S., Chang, U.I., et al. (2021) Definition of Sarcopenia in Chronic Liver Disease. Life, 11, Article 349.
https://doi.org/10.3390/life11040349
[18] Bunchorntavakul, C. and Reddy, K.R. (2020) Review Article: Malnutri-tion/Sarcopenia and Frailty in Patients with Cirrhosis. Alimentary Pharmacology & Therapeutics, 51, 64-77.
https://doi.org/10.1111/apt.15571
[19] Jindal, A. and Jagdish, R.K. (2019) Sarcopenia: Ammonia Metabolism and Hepatic Encephalopathy. Clinical and Molecular Hepatology, 25, 270-279.
https://doi.org/10.3350/cmh.2019.0015
[20] Lowe, R., Hey, P. and Sinclair, M. (2022) The Sex-Specific Prognos-tic Utility of Sarcopenia in Cirrhosis. Journal of Cachexia, Sarcopenia and Muscle, 13, 2608-2615.
https://doi.org/10.1002/jcsm.13059
[21] Della, P.C., Lozanoska-Ochser, B., Renzini, A., et al. (2023) Sex Differ-ences in Inflammation and Muscle Wasting in Aging and Disease. International Journal of Molecular Sciences, 24, Arti-cle 4651.
https://doi.org/10.3390/ijms24054651
[22] Deng, N., Mallepally, N., Peng, F.B., et al. (2021) Serum Testosterone Levels and Testosterone Supplementation in Cirrhosis: A Systematic Review. Liver International, 41, 2358-2370.
https://doi.org/10.1111/liv.14938
[23] Tandon, P., Ney, M., Irwin, I., et al. (2012) Severe Muscle Depletion in Pa-tients on the Liver Transplant Wait List: Its Prevalence and Independent Prognostic Value. Liver Transplantation, 18, 1209-1216.
https://doi.org/10.1002/lt.23495
[24] Mitchell, W.K., Williams, J., Atherton, P., et al. (2012) Sarcope-nia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review. Frontiers in Physiology, 3, Article 260.
https://doi.org/10.3389/fphys.2012.00260
[25] Jurado, S., Pares, A., Peris, P., et al. (2022) Bilirubin Increases Viability and Decreases Osteoclast Apoptosis Contributing to Osteoporosis in Advanced Liver Diseases. Bone, 162, Ar-ticle ID: 116483.
https://doi.org/10.1016/j.bone.2022.116483
[26] Ruiz-Gaspa, S., Guanabens, N., Jurado, S., et al. (2020) Bilirubin and Bile Acids in Osteocytes and Bone Tissue. Potential Role in the Cholestatic-Induced Osteoporosis. Liver Interna-tional, 40, 2767-2775.
https://doi.org/10.1111/liv.14630
[27] Li, Z., Hu, J., Bao, C., et al. (2022) Activation of the NLRP3 Inflammasome and Elevation of Interleukin-1β Secretion in Infection by Sever Fever with Thrombocytopenia Syndrome Virus. Scientific Reports, 12, Article No. 2573.
https://doi.org/10.1038/s41598-022-06229-0
[28] 冯冬霞, 奚晶, 杨振斌, 等. 乙型肝炎肝硬化并发自发性细菌性腹膜炎患者外周血单个核细胞NLRP3和Caspase-1水平变化及其临床意义探讨[J]. 实用肝脏病杂志, 2023, 26(5): 682-685.
[29] de Carvalho, R.M. and Szabo, G. (2022) Role of the Inflammasome in Liver Disease. Annual Re-view of Pathology: Mechanisms of Disease, 17, 345-365.
https://doi.org/10.1146/annurev-pathmechdis-032521-102529
[30] Assa, A., Vong, L., Pinnell, L.J., et al. (2014) Vitamin D Deficiency Promotes Epithelial Barrier Dysfunction and Intestinal Inflammation. The Journal of Infectious Diseases, 210, 1296-1305.
https://doi.org/10.1093/infdis/jiu235
[31] Yousif, M.M., Sadek, A., Farrag, H.A., et al. (2019) Associated Vitamin D Deficiency Is a Risk Factor for the Complication of HCV-Related Liver Cirrhosis Includ-ing Hepatic Encephalopathy and Spontaneous Bacterial Peritonitis. Internal and Emergency Medicine, 14, 753-761.
https://doi.org/10.1007/s11739-019-02042-2
[32] Zhang, Z., Wu, L., Wang, G. and Hu, P. (2021) Effect of Vita-min D Deficiency on Spontaneous Peritonitis in Cirrhosis: A Meta-Analysis. Przegląd Gastroenterologiczny, 16, 10-14.
https://doi.org/10.5114/pg.2020.101632
[33] Abd, E.W.A., Awadeen, A., Mansour, M.M. and Shemies, R. (2023) The Diagnostic and Prognostic Utility of Serum Cystatin C and Angiopoietin 2 in Patients with Liver Cirrhosis Compli-cated by Acute Kidney Injury. Therapeutic Apheresis and Dialysis, 27, 419-427.
https://doi.org/10.1111/1744-9987.13936
[34] Akwii, R.G., Sajib, M.S., Zahra, F.T. and Mikelis, C.M. (2019) Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells, 8, Article 471.
https://doi.org/10.3390/cells8050471
[35] Cowland, J.B. and Borregaard, N. (1997) Molecular Characterization and Pattern of Tissue Expression of the Gene for Neutrophil Gelatinase-Associated Lipocalin from Humans. Genomics, 45, 17-23.
https://doi.org/10.1006/geno.1997.4896
[36] Chen, J.F., Weng, W.Z., Huang, M., et al. (2022) The Impact of Se-rum Thyroid-Stimulation Hormone Levels on the Outcome of Hepatitis B Virus Related Acute-on-Chronic Liver Failure: An Observational Study. BMC Gastroenterology, 22, Article No. 330.
https://doi.org/10.1186/s12876-022-02406-7
[37] Engelmann, C., Claria, J., Szabo, G., et al. (2021) Pathophysiol-ogy of Decompensated Cirrhosis: Portal Hypertension, Circulatory Dysfunction, Inflammation, Metabolism and Mito-chondrial Dysfunction. Journal of Hepatology, 75, S49-S66.
https://doi.org/10.1016/j.jhep.2021.01.002
[38] Moller, S. and Bendtsen, F. (2018) The Pathophysiology of Arteri-al Vasodilatation and Hyperdynamic Circulation in Cirrhosis. Liver International, 38, 570-580.
https://doi.org/10.1111/liv.13589
[39] Tapper, E.B. and Parikh, N.D. (2023) Diagnosis and Management of Cir-rhosis and Its Complications: A Review. JAMA, 329, 1589-1602.
https://doi.org/10.1001/jama.2023.5997
[40] Wagener, G. and Bakker, J. (2015) Vasopressin in Cirrhosis and Sep-sis: Physiology and Clinical Implications. Minerva Anestesiologica, 81, 1377-1383.
[41] Rondon-Berrios, H. and Velez, J. (2022) Hyponatremia in Cirrhosis. Clinics in Liver Disease, 26, 149-164.
https://doi.org/10.1016/j.cld.2022.01.001
[42] Bankir, L., Bichet, D.G. and Morgenthaler, N.G. (2017) Vasopres-sin: Physiology, Assessment and Osmosensation. Journal of Internal Medicine, 282, 284-297.
https://doi.org/10.1111/joim.12645
[43] Szmygin, H., Szydelko, J. and Matyjaszek-Matuszek, B. (2021) Copeptin as a Novel Biomarker of Cardiometabolic Syndrome. Endokrynologia Polska, 72, 566-571.
https://doi.org/10.5603/EP.a2021.0072
[44] Alukal, J.J., John, S. and Thuluvath, P.J. (2020) Hyponatremia in Cir-rhosis: An Update. The American Journal of Gastroenterology, 115, 1775-1785.
https://doi.org/10.14309/ajg.0000000000000786
[45] Tan, H.Q., Zhao, M., Huang, Z., et al. (2023) Circulating Copeptin Level and the Clinical Prognosis of Patients with Chronic Liver Disease. World Journal of Gastroenterology, 29, 4797-4808.
https://doi.org/10.3748/wjg.v29.i31.4797
[46] Hartl, L., Simbrunner, B., Jachs, M., et al. (2023) An Impaired Pituitary-Adrenal Signalling Axis in Stable Cirrhosis Is Linked to Worse Prognosis. JHEP Reports, 5, Arti-cle ID: 100789.
https://doi.org/10.1016/j.jhepr.2023.100789
[47] Moreau, R., Jalan, R., Gines, P., et al. (2013) Acute-on-Chronic Liver Failure Is a Distinct Syndrome That Develops in Patients with Acute Decompensation of Cir-rhosis. Gastroenterology, 144, 1426-1437.E9.
https://doi.org/10.1053/j.gastro.2013.02.042
[48] Piano, S., Tonon, M., Vettore, E., et al. (2017) Incidence, Pre-dictors and Outcomes of Acute-on-Chronic Liver Failure in Outpatients with Cirrhosis. Journal of Hepatology, 67, 1177-1184.
https://doi.org/10.1016/j.jhep.2017.07.008
[49] Suda, T., Takatori, H., Hayashi, T., et al. (2023) Plas-ma Antithrombin III Levels Can Be a Prognostic Factor in Liver Cirrhosis Patients with Portal Vein Thrombosis. Inter-national Journal of Molecular Sciences, 24, Article 7732.
https://doi.org/10.3390/ijms24097732
[50] Okuno, M., Kimura, Y., Taura, K., et al. (2021) Low Level of Postop-erative Plasma Antithrombin III Is Associated with Portal Vein Thrombosis after Liver Surgery. Surgery Today, 51, 1343-1351.
https://doi.org/10.1007/s00595-021-02257-x
[51] Ramzan, M., Iqbal, A., Murtaza, H.G., et al. (2020) Comparison of CLIF-C ACLF Score and MELD Score in Predicting ICU Mortality in Patients with Acute-On-Chronic Liver Failure. Cureus, 12, e7087.
https://doi.org/10.7759/cureus.7087
[52] Wang, F., Sun, W., Xiao, Q., et al. (2021) Peripheral T Lymphocytes Predict the Severity and Prognosis in Patients with HBV-Related Acute-on-Chronic Liver Failure. Medicine, 100, e24075.
https://doi.org/10.1097/MD.0000000000024075
[53] Huang, C., Li, W., Chen, C., et al. (2023) CHINAT-CD4 Score Predicts Transplant-Free Survival in Patients with Acute-on-Chronic Liver Failure. Journal of Inflammation Re-search, 16, 197-207.
https://doi.org/10.2147/JIR.S389789
[54] Zhang, J.Y., Zhang, Z., Lin, F., et al. (2010) Inter-leukin-17—Producing CD4+ T Cells Increase with Severity of Liver Damage in Patients with Chronic Hepatitis B. Hepatology, 51, 81-91.
https://doi.org/10.1002/hep.23273
[55] Wong, Y.J., Li, J., Liu, C., et al. (2022) CHESS-ALARM Score to Stratify Decompensation Risk in Compensated Advanced Chronic Liver Disease Patients: An International Multicenter Study. Journal of Gastroenterology and Hepatology, 37, 1043-1051.
https://doi.org/10.1111/jgh.15819
[56] Pons, M., Augustin, S., Scheiner, B., et al. (2021) Noninvasive Diagnosis of Portal Hypertension in Patients with Compensated Advanced Chronic Liver Disease. The American Journal of Gas-troenterology, 116, 723-732.
https://doi.org/10.14309/ajg.0000000000000994
[57] Garcia-Tsao, G. and Abraldes, J.G. (2021) Nonselective β-Blockers in Compensated Cirrhosis: Preventing Variceal Hemorrhage or Preventing Decompensation? Gastroenterol-ogy, 161, 770-773.
https://doi.org/10.1053/j.gastro.2021.04.077
[58] Farid, K., Omran, M.M., Farag, R.E., Arafa, M.M. and Emran, T.M. (2017) Development and Evaluation of a Novel Score for Prediction of Large Oesophageal Varices in Patients with Hepatitis c Virus-Induced Liver Cirrhosis. British Journal of Biomedical Science, 74, 138-143.
https://doi.org/10.1080/09674845.2017.1297217
[59] Li, F., Wang, T., Liang, J., et al. (2023) Albumin-Bilirubin Grade and INR for the Prediction of Esophagogastric Variceal Rebleeding after Endoscopic Treatment in Cirrhosis. Ex-perimental and Therapeutic Medicine, 26, Article No. 501.
https://doi.org/10.3892/etm.2023.12200
[60] Lisman, T. and Luyendyk, J.P. (2018) Platelets as Modulators of Liver Diseases. Seminars in Thrombosis and Hemostasis, 44, 114-125.
https://doi.org/10.1055/s-0037-1604091
[61] Vuille-Lessard, E., Rodrigues, S.G. and Berzigotti, A. (2021) Noninvasive Detection of Clinically Significant Portal Hypertension in Compensated Advanced Chronic Liver Disease. Clinics in Liver Disease, 25, 253-289.
https://doi.org/10.1016/j.cld.2021.01.005
[62] Oikonomou, T., Chrysavgis, L., Kiapidou, S., et al. (2023) Aspartate Aminotransferase-to-Platelet Ratio Index Can Predict the Outcome in Patients with Stable Decompensated Cirrhosis. An-nals of Gastroenterology, 36, 442-448.
https://doi.org/10.20524/aog.2023.0800
[63] Wai, C.T., Greenson, J.K., Fontana, R.J., et al. (2003) A Simple Noninvasive Index Can Predict Both Significant Fibrosis and Cirrhosis in Patients with Chronic Hepatitis C. Hepatology, 38, 518-526.
https://doi.org/10.1053/jhep.2003.50346
[64] Mao, W., Sun, Q., Fan, J., et al. (2016) AST to Platelet Ratio Index Predicts Mortality in Hospitalized Patients with Hepatitis B-Related Decompensated Cirrhosis. Medicine, 95, e2946.
https://doi.org/10.1097/MD.0000000000002946