[1]
|
Adler, R.L., Dedieu, J.P., Margulies, J.Y., et al. (2002) Newton's Method on Riemannian
Manifolds and a Geometric Model for the Human Spine. IMA Journal of Numerical Analysis,
22, 359-390. https://doi.org/10.1093/imanum/22.3.359
|
[2]
|
Li, C. and Wang, J. (2006) Newton's Method on Riemannian Manifolds: Smale's Point Estimate
Theory under the
-Condition. IMA Journal of Numerical Analysis, 26, 228-251.
https://doi.org/10.1093/imanum/dri039
|
[3]
|
Gabay, D. (1982) Minimizing a Differentiable Function over a Differential Manifold. Journal
of Optimization Theory and Applications, 37, 177-219. https://doi.org/10.1007/BF00934767
|
[4]
|
Wang, J.H., Li, C., Lopez, G. and Yao, J.C. (2015) Convergence Analysis of Inexact Proximal
Point Algorithms on Hadamard Manifolds. Journal of Global Optimization, 61, 553-573.
https://doi.org/10.1007/s10898-014-0182-2
|
[5]
|
Wang, X.M. (2018) Subgradient Algorithms on Riemannian Manifolds of Lower Bounded Curvatures.
Optimization, 67, 179-194. https://doi.org/10.1080/02331934.2017.1387548
|
[6]
|
Absil, P.A., Baker, C.G. and Gallivan, K.A. (2007) Trust-Region Methods on Riemannian
Manifolds. Foundations of Computational Mathematics, 7, 303-330.
https://doi.org/10.1007/s10208-005-0179-9
|
[7]
|
Huang, W. and Wei, K. (2022) Riemannian Proximal Gradient Methods. Mathematical Pro-
gramming, 194, 371-413. https://doi.org/10.1007/s10107-021-01632-3
|
[8]
|
Jolliffe, I.T., Trendafilov, N.T. and Uddin, M. (2003) A Modified Principal Component Technique
Based on the LASSO. Journal of Computational and Graphical Statistics, 12, 531-547.
https://doi.org/10.1198/1061860032148
|
[9]
|
Genicot, M., Huang, W. and Trendafilov, N.T. (2015) Weakly Correlated Sparse Components
with Nearly Orthonormal Loadings. Geometric Science of Information: Second International
Conference, Palaiseau, 28-30 October 2015, 484-490.
https://doi.org/10.1007/978-3-319-25040-3 52
|
[10]
|
Zhang, Y., Lau, Y., Kuo, H., et al. (2017) On the Global Geometry of Sphere-Constrained
Sparse Blind Deconvolution. 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition, Honolulu, HI, 21-26 July 2017, 4894-4902.
|
[11]
|
Tang, J. and Liu, H. (2012) Unsupervised Feature Selection for Linked Social Media Data.
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, Beijing, 12-16 August 2012, 904-912.
|
[12]
|
Beck, A. and Teboulle, M. (2009) A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems. SIAM Journal on Imaging Sciences, 2, 183-202.
https://doi.org/10.1137/080716542
|
[13]
|
Huang, W. (2013) Optimization Algorithms on Riemannian Manifolds with Applications. The
Florida State University, Tallahassee, FL.
|
[14]
|
Hosseini, S. and Uschmajew, A. (2017) A Riemannian Gradient Sampling Algorithm for Nonsmooth
Optimization on Manifolds. SIAM Journal on Optimization, 27, 173-189.
https://doi.org/10.1137/16M1069298
|
[15]
|
Hosseini, S., Huang, W. and Yousefpour, R. (2018) Line Search Algorithms for Locally Lipschitz
Functions on Riemannian Manifolds. SIAM Journal on Optimization, 28, 596-619.
https://doi.org/10.1137/16M1108145
|
[16]
|
Liu, Y., Shang, F., Cheng, J., et al. (2017) Accelerated First-Order Methods for Geodesically
Convex Optimization on Riemannian Manifolds. Advances in Neural Information Processing
Systems, 30.
|
[17]
|
Chen, S., Ma, S., So, A.M.-C., et al. (2020) Proximal Gradient Method for Nonsmooth Optimization
over the Stiefel Manifold. SIAM Journal on Optimization, 30, 210-239.
https://doi.org/10.1137/18M122457X
|
[18]
|
Huang, W. and Wei, K. (2019) An Extension of Fast Iterative Shrinkage-thresholding to Riemannian
Optimization for Sparse Principal Component Analysis.
https://doi.org/10.48550/arXiv.1909.05485
|
[19]
|
Huang, W. and Wei, K. (2022) Riemannian Proximal Gradient Methods. Mathematical Pro-
gramming, 194, 371-413. https://doi.org/10.1007/s10107-021-01632-3
|
[20]
|
Tanabe, H., Fukuda, E.H. and Yamashita, N. (2019) Proximal Gradient Methods for Multiobjective
Optimization and Their Applications. Computational Optimization and Applications,
72, 339-361. https://doi.org/10.1007/s10589-018-0043-x
|
[21]
|
Tanabe, H., Fukuda, E.H. and Yamashita, N. (2023) Convergence Rates Analysis of a Multiobjective
Proximal Gradient Method. Optimization Letters, 17, 333-350.
https://doi.org/10.1007/s11590-022-01877-7
|
[22]
|
Do Carmo, M.P. and Flaherty Francis, J. (1992) Riemannian Geometry. Birkhauser.
|
[23]
|
陈维桓,李兴校.黎曼几何引论[M].北京: 北京大学出版社,2002: 12.
|
[24]
|
Boothby, W.M. (1986) An Introduction to Differentiable Manifolds and Riemannian Geometry.
Academic Press, Cambridge, MA.
|
[25]
|
Padlewska, B. and Darmochwal, A. (1990) Topological Spaces and Continuous Functions.
Formalized Mathematics, 1, 223-230.
|
[26]
|
Hogan, W.W. (1973) Point-to-Set Maps in Mathematical Programming. SIAM Review, 15,
591-603. https://doi.org/10.1137/1015073
|
[27]
|
Tanabe, H., Fukuda, E.H. and Yamashita, N. (2023) New Merit Functions for Multiobjective
Optimization and Their Properties. Optimization, 1-38.
https://doi.org/10.1080/02331934.2023.2232794
|