|
[1]
|
Wu, Y., Tian, P., Liang, L., et al. (2023) Combined Use of Right Ventricular Coupling and Pulmonary Arterial Elastance as a Comprehensive Stratification Approach for Right Ventricular Function. Clinical and Translational Science, 16, 1582-1593. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rako, Z.A., Kremer, N., Yogeswaran, A., et al. (2023) Adaptive versus Maladaptive Right Ventricular Remodelling. ESC Heart Failure, 10, 762-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lippmann, M.R. and Maron, B.A. (2022) The Right Ventricle: From Em-bryologic Development to RV Failure. Current Heart Failure Reports, 19, 325-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Friedberg, M.K. and Redington, A.N. (2014) Right versus Left Ventricular Failure: Differences, Similarities, and Interactions. Circulation, 129, 1033-1044. [Google Scholar] [CrossRef]
|
|
[5]
|
Kiserud, T. and Acharya, G. (2004) The Fetal Circulation. Prenatal Diagnosis, 24, 1049-1059. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Markel, T.A., Wairiuko, G.M., Lahm, T., et al. (2008) The Right Heart and Its Distinct Mechanisms of Development, Function, and Failure. The Journal of Surgical Research, 146, 304-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sanz, J., Sánchez-Quintana, D., Bossone, E., et al. (2019) Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 1463-1482. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rungatscher, A., Hallström, S., Linardi, D., et al. (2015) S-Nitroso Human Serum Albumin Attenuates Pulmonary Hypertension, Improves Right Ventricular-Arterial Coupling, and Re-duces Oxidative Stress in a Chronic Right Ventricle Volume Overload Model. The Journal of Heart and Lung Trans-plantation: The Official Publication of the International Society for Heart Transplantation, 34, 479-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Peters, J., Mack, G.W. and Lister, G. (2001) The Importance of the Peripheral Circulation in Critical Illnesses. Intensive Care Medicine, 27, 1446-1458. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dahou, A., Levin, D., Reisman, M., et al. (2019) Anatomy and Physiology of the Tricuspid Valve. JACC Cardiovascular Imaging, 12, 458-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Arvidsson, P.M., Töger, J., Carlsson, M., et al. (2017) Left and Right Ventricular Hemodynamic Forces in Healthy Volunteers and Elite Athletes Assessed with 4D Flow Magnetic Resonance Imaging. American Journal of Physiology Heart and Circulatory Physiology, 312, H314-H328. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Guazzi, M., Bandera, F., Pelissero, G., et al. (2013) Tricuspid Annular Plane Systolic Excursion and Pulmonary Arterial Systolic Pressure Relationship in Heart Failure: An Index of Right Ventricular Contractile Function and Prognosis. American Journal of Physiology Heart and Circulatory Physiolo-gy, 305, H1373-H1381. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tello, K., Axmann, J., Ghofrani, H.A., et al. (2018) Relevance of the TAPSE/PASP Ratio in Pulmonary Arterial Hypertension. International Journal of Cardiology, 266, 229-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tello, K., Wan, J., Dalmer, A., et al. (2019) Validation of the Tri-cuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ven-tricular-Arterial Coupling in Severe Pulmonary Hypertension. Circulation Cardiovascular Imaging, 12, e009047. [Google Scholar] [CrossRef]
|
|
[15]
|
Fortuni, F., Butcher, S.C., Dietz, M.F., et al. (2021) Right Ventricular-Pulmonary Arterial Coupling in Secondary Tricuspid Regurgitation. The American Journal of Cardi-ology, 148, 138-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Champion, H.C., Michelakis, E.D. and Hassoun, P.M. (2009) Comprehensive Invasive and Noninvasive Approach to the Right Ventricle-Pulmonary Circulation Unit: State of the Art and Clinical and Research Implications. Circulation, 120, 992-1007. [Google Scholar] [CrossRef]
|
|
[17]
|
Vonk Noordegraaf, A., Chin, K.M., Haddad, F., et al. (2019) Pathophysiology of the Right Ventricle and of the Pulmonary Circulation in Pulmonary Hypertension: An Update. The European Respiratory Journal, 53, Article ID: 1801900. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Humbert, M., Guignabert, C., Bonnet, S., et al. (2019) Pathol-ogy and Pathobiology of Pulmonary Hypertension: State of the Art and Research Perspectives. The European Respira-tory Journal, 53, Article ID: 1801887. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Huertas, A., Guignabert, C., Barberà, J.A., et al. (2018) Pul-monary Vascular Endothelium: The Orchestra Conductor in Respiratory Diseases: Highlights from Basic Research to Therapy. The European Respiratory Journal, 51, Article ID: 1700745. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Andersen, S., Nielsen-Kudsk, J.E., Vonk Noordegraaf, A., et al. (2019) Right Ventricular Fibrosis. Circulation, 139, 269-285. [Google Scholar] [CrossRef]
|
|
[21]
|
程巧, 毕小军. 超声新技术评估心肌僵硬度的研究进展[J]. 华中科技大学学报(医学版), 2022, 51(3): 420-424.
|
|
[22]
|
Avazmohammadi, R., Mendiola, E.A., Li, D.S., et al. (2019) Interactions between Structural Remodeling and Hypertrophy in the Right Ventricle in Response to Pulmo-nary Arterial Hypertension. Journal of Biomechanical Engineering, 141, 910161-9101613. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sharifi Kia, D., Benza, E., Bachman, T.N., et al. (2020) Angiotensin Re-ceptor-Neprilysin Inhibition Attenuates Right Ventricular Remodeling in Pulmonary Hypertension. Journal of the Amer-ican Heart Association, 9, e015708. [Google Scholar] [CrossRef]
|
|
[24]
|
Avazmohammadi, R., Hill, M., Simon, M., et al. (2017) Transmu-ral Remodeling of Right Ventricular Myocardium in Response to Pulmonary Arterial Hypertension. APL Bioengineering, 1, Article ID: 016105. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Frangogiannis, N.G. (2017) Fibroblasts and the Extracellular Matrix in Right Ventricular Disease. Cardiovascular Research, 113, 1453-1464. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Rain, S., Handoko, M.L., Trip, P., et al. (2013) Right Ventricular Diastolic Impairment in Patients with Pulmonary Arterial Hypertension. Circulation, 128, 2016-2025. [Google Scholar] [CrossRef]
|
|
[27]
|
Silbiger, J.J. (2019) Atrial Functional Tricuspid Regurgitation: An Underappreciated Cause of Secondary Tricuspid Regurgitation. Echocardiography (Mount Kisco, NY), 36, 954-957. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mendiola, E.A., Da Silva Gonçalves Bos, D., Leichter, D.M., et al. (2023) Right Ventricular Architectural Remodeling and Functional Adaptation in Pulmonary Hypertension. Circu-lation Heart Failure, 16, e009768. [Google Scholar] [CrossRef]
|
|
[29]
|
Sugiura, A., Kavsur, R., Spieker, M., et al. (2022) Impact of Right Ventricular-Pulmonary Arterial Coupling on Clinical Outcomes of Tricuspid Regurgitation. Eu-roIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the Eu-ropean Society of Cardiology, 18, 852-861. [Google Scholar] [CrossRef]
|
|
[30]
|
Medvedofsky, D., Aronson, D., Gomberg-Maitland, M., et al. (2017) Tricuspid Regurgitation Progression and Regression in Pulmonary Arterial Hypertension: Implications for Right Ventric-ular and Tricuspid Valve Apparatus Geometry and Patients Outcome. European Heart Journal Cardiovascular Imaging, 18, 86-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Florescu, D.R., Muraru, D., Florescu, C., et al. (2022) Right Heart Chambers Geometry and Function in Patients with the Atrial and the Ventricular Phenotypes of Functional Tricuspid Regurgitation. European Heart Journal Cardiovascular Imaging, 23, 930-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fortuni, F., Dietz, M.F., Butcher, S.C., et al. (2020) Prognostic Implica-tions of Increased Right Ventricular Wall Tension in Secondary Tricuspid Regurgitation. The American Journal of Car-diology, 136, 131-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Oakland, H., Joseph, P., Naeije, R., et al. (2021) Arterial Load and Right Ventricular-Vascular Coupling in Pulmonary Hypertension. Journal of Applied Physiology (Bethesda, Md: 1985), 131, 424-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Richter, M.J., Peters, D., Ghofrani, H.A., et al. (2020) Eval-uation and Prognostic Relevance of Right Ventricular-Arterial Coupling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 201, 116-119. [Google Scholar] [CrossRef]
|
|
[35]
|
Isotani, Y., Amiya, E., Hatano, M., et al. (2023) A New As-sessment Method for Right Ventricular Diastolic Function Using Right Heart Catheterization by Pressure-Volume Loop. Physiological Reports, 11, e15751. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Inuzuka, R., Hsu, S., Tedford, R.J., et al. (2018) Single-Beat Estimation of Right Ventricular Contractility and Its Coupling to Pulmonary Arterial Load in Patients with Pulmonary Hypertension. Journal of the American Heart Association, 7, e007929. [Google Scholar] [CrossRef]
|
|
[37]
|
Naeije, R., Brimioulle, S. and Dewachter, L. (2014) Biomechanics of the Right Ventricle in Health and Disease (2013 Grover Con-ference Series). Pulmonary Circulation, 4, 395-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lahm, T., Douglas, I.S., Archer, S.L., et al. (2018) Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. American Journal of Respiratory and Critical Care Medicine, 198, e15-e43. [Google Scholar] [CrossRef]
|
|
[39]
|
Tabima, D.M., Hacker, T.A. and Chesler, N.C. (2010) Measuring Right Ventricular Function in the Normal and Hypertensive Mouse Hearts Using Admittance-Derived Pressure-Volume Loops. American Journal of Physiology Heart and Circulatory Physiology, 299, H2069-H2075. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Tello, K., Dalmer, A., Axmann, J., et al. (2019) Reserve of Right Ventricular-Arterial Coupling in the Setting of Chronic Overload. Circulation Heart Failure, 12, e005512. [Google Scholar] [CrossRef]
|
|
[41]
|
Schmeißer, A., Rauwolf, T., Groscheck, T., et al. (2021) Predictors and Prognosis of Right Ventricular Function in Pulmonary Hypertension Due to Heart Failure with Reduced Ejection Fraction. ESC Heart Failure, 8, 2968-2981. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hsu, S., Simpson, C.E., Houston, B.A., et al. (2020) Multi-Beat Right Ventricular-Arterial Coupling Predicts Clinical Worsening in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 9, e016031. [Google Scholar] [CrossRef]
|
|
[43]
|
Bashline, M.J. and Simon, M.A. (2019) Use of Tricuspid Annular Plane Systolic Excursion/Pulmonary Artery Systolic Pressure as a Non-Invasive Method to Assess Right Ventricular-PA Coupling in Patients with Pulmonary Hypertension. Circulation Cardiovascular Imaging, 12, e009648. [Google Scholar] [CrossRef]
|
|
[44]
|
Richter, M.J., Yogeswaran, A., Husain-Syed, F., et al. (2022) A Novel Non-Invasive and Echocardiography-Derived Method for Quantification of Right Ventricular Pres-sure-Volume Loops. European Heart Journal Cardiovascular Imaging, 23, 498-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Guazzi, M. (2018) Use of TAPSE/PASP Ratio in Pulmonary Arterial Hypertension: An Easy Shortcut in a Congested Road. International Journal of Cardiology, 266, 242-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dong, Y., Li, Y. and Song, L. (2022) Evaluation of Right Ven-tricular Function in Patients with Pulmonary Arterial Hypertension by Different Right Ventricular-Pulmonary Artery Coupling Methods. Medicine, 101, e30873. [Google Scholar] [CrossRef]
|
|
[47]
|
Aubert, R., Venner, C., Huttin, O., et al. (2018) Three-Dimensional Echocardiography for the Assessment of Right Ventriculo-Arterial Coupling. Journal of the Ameri-can Society of Echocardiography: Official Publication of the American Society of Echocardiography, 31, 905-915. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Hsiao, S.H., Lin, S.K., Wang, W.C., et al. (2006) Severe Tricuspid Regurgitation Shows Significant Impact in the Relationship among Peak Systolic Tricuspid Annular Velocity, Tricuspid Annular Plane Systolic Excursion, and Right Ventricular Ejection Fraction. Journal of the American Society of Echocar-diography: Official Publication of the American Society of Echocardiography, 19, 902-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Gavazzoni, M., Badano, L.P., Cascella, A., et al. (2023) Clinical Value of a Novel Three-Dimensional Echocardiography-Derived Index of Right Ventricle-Pulmonary Artery Coupling in Tricuspid Regurgitation. Journal of the American Society of Echocardiography: Official Publication of the American So-ciety of Echocardiography, 36, 1154-1166.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Inciardi, R.M., Abanda, M., Shah, A.M., et al. (2023) Right Ven-tricular Function and Pulmonary Coupling in Patients with Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology, 82, 489-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Stąpór, M., Sobczyk, D., Wasilewski, G., et al. (2023) Right Ven-tricular-Pulmonary Arterial Coupling in Patients with Implanted Left Ventricular Assist Devices. Hellenic Journal of Cardiology. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Humbert, M., Kovacs, G., Hoeper, M.M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yoshida, K., Axelsen, J.B., Saku, K., et al. (2023) How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling. Journal of Applied Physiology (Bethesda, Md: 1985), 135, 53-59. [Google Scholar] [CrossRef] [PubMed]
|