|
[1]
|
Boström, P., Wu, J., Jedrychowski, M.P., et al. (2012) A PGC1-α-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Panati, K., Narala, V.R., Narasimha, V.R., et al. (2018) Expression, Puri-fication and Biological Characterisation of Recombinant Human Irisin (12.5 kDa). Journal of Genetic Engineering and Biotechnology, 16, 459-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhao, R. (2022) Irisin at the Crossroads of Inter-Organ Communi-cations: Challenge and Implications. Frontiers in Endocrinology, 13, Article 989135. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Aydin, S., Kuloglu, T., Aydin, S., et al. (2014) A Comprehensive Immunohistochemical Examination of the Distribution of the Fat-Burning Protein Irisin in Biological Tissues. Peptides, 61, 130-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Huh, J.Y., Panagiotou, G., Mougios, V., et al. (2012) FNDC5 and Irisin in Humans: I. Predictors of Circulating Concentrations in Serum and Plasma and II. mRNA Expression and Circulating Concentrations in Response to Weight Loss and Exercise. Metabolism: Clinical and Experimental, 61, 1725-1738. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Perakakis, N., Triantafyllou, G.A., Fernández-Real, J.M., et al. (2017) Physiology and Role of Irisin in Glucose Homeostasis. Nature Reviews Endocrinology, 13, 324-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jedrychowski, M.P., Wrann, C.D., Paulo, J.A., et al. (2015) Detec-tion and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metabolism, 22, 734-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fatouros, I.G. (2018) Is Irisin the New Player in Exercise-Induced Adaptations or Not? A 2017 Update. Clinical Chemistry and Laboratory Medicine, 56, 525-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Anastasilakis, A.D., Polyzos, S.A., Saridakis, Z.G., et al. (2014) Circulating Irisin in Healthy, Young Individuals: Day-Night Rhythm, Effects of Food Intake and Exercise, and Associa-tions with Gender, Physical Activity, Diet, and Body Composition. The Journal of Clinical Endocrinology and Metabo-lism, 99, 3247-3255. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bubak, M.P., Heesch, M.W.S., Shute, R.J., et al. (2017) Irisin and Fi-bronectin Type III Domain-Containing 5 Responses to Exercise in Different Environmental Conditions. International Journal of Exercise Science, 10, 666-680.
|
|
[11]
|
Kim, H., Wrann, C.D., Jedrychowski, M., et al. (2018) Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 175, 1756-1768.E17. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Fu, T., Li, C., Sun, Z., et al. (2022) Integrin αV Mediates the Effects of Irisin on Human Mature Adipocytes. Obesity Facts, 15, 442-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xue, Y., Hu, S., Chen, C., et al. (2022) Myokine Irisin Promotes Osteogenesis by Activating BMP/SMAD Signaling via αV Integrin and Regulates Bone Mass in Mice. International Journal of Biological Sciences, 18, 572-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bi, J., Zhang, J., Ren, Y., et al. (2020) Exercise Hormone Irisin Mitigates Endothelial Barrier Dysfunction and Microvascular Leakage-Related Diseases. JCI Insight, 5, e136277. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yan, W., Chen, Y., Guo, Y., et al. (2022) Irisin Promotes Cardiac Homing of Intravenously Delivered MSCs and Protects against Ischemic Heart Injury. Advanced Science, 9, e2103697. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Oguri, Y., Shinoda, K., Kim, H., et al. (2020) CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 182, 563-577.E20. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bi, J., Zhang, J., Ren, Y., et al. (2020) Irisin Reverses Intestinal Ep-ithelial Barrier Dysfunction during Intestinal Injury via Binding to the Integrin αVβ5 Receptor. Journal of Cellular and Molecular Medicine, 24, 996-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Afshin, A., Forouzanfar, M.H., Reitsma, M.B., et al. (2017) Health Ef-fects of Overweight and Obesity in 195 Countries over 25 Years. The New England Journal of Medicine, 377, 13-27. [Google Scholar] [CrossRef]
|
|
[19]
|
Cuciureanu, M., Caratașu, C.C., Gabrielian, L., et al. (2023) 360-Degree Perspectives on Obesity. Medicina, 59, Article 1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Samuelson, I. and Vidal-Puig, A. (2020) Studying Brown Adipose Tissue in a Human in Vitro Context. Frontiers in Endocrinology, 11, Article 629. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tsai, Y.C., Wang, C.W., Wen, B.Y., et al. (2020) Involvement of the p62/Nrf2/HO-1 Pathway in the Browning Effect of Irisin in 3T3-L1 Adipocytes. Molecular and Cellular Endocri-nology, 514, Article 110915. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Huh, J.Y., Dincer, F., Mesfum, E. and Mantzoros, C.S. (2014) Irisin Stimulates Muscle Growth-Related Genes and Regulates Adipocyte Differentiation and Metabolism in Humans. International Journal of Obesity, 38, 1538-1544. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Y., Xie, C., Wang, H., et al. (2016) Irisin Exerts Dual Effects on Browning and Adipogenesis of Human White Adipocytes. American Journal of Physiology-Endocrinology and Metabo-lism, 311, E530-E541. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, H., Zhang, Y., Wang, F., et al. (2019) Effects of Irisin on the Differentiation and Browning of Human Visceral White Adipocytes. American Journal of Translational Research, 11, 7410-7421.
|
|
[25]
|
Wood, I.S., Wang, B., Jenkins, J.R. and Trayhurn, P. (2005) The Pro-Inflammatory Cytokine IL-18 Is Expressed in Human Adipose Tissue and Strongly Upregulated by TNFα in Human Adipocytes. Biochemical and Bio-physical Research Communications, 337, 42242-42249. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity Induces a Phenotypic Switch in Adipose Tissue Macrophage Polari-zation. The Journal of Clinical Investigation, 117, 175-184. [Google Scholar] [CrossRef]
|
|
[27]
|
Mazur-Bialy, A.I., Pocheć, E. and Zarawski, M. (2017) Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected with TLR4/MyD88 Signaling Pathway Activation. International Journal of Molecular Sciences, 18, Article 701. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pang, Y., Zhu, H., Xu, J., et al. (2017) β-Arrestin-2 Is Involved in Irisin Induced Glucose Metabolism in Type 2 Diabetes via p38 MAPK Signaling. Experimental Cell Research, 360, 199-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Liu, J.J., Wong, M.D., Toy, W.C., et al. (2013) Lower Circulating Irisin Is Associated with Type 2 Diabetes Mellitus. Journal of Diabetes and Its Complications, 27, 365-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shoukry, A., Shalaby, S.M., El-Arabi Bdeer, S., et al. (2016) Circulating Serum Irisin Levels in Obesity and Type 2 Diabetes Mellitus. IUBMB Life, 68, 544-556. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Huerta-Delgado, A.S., Roffe-Vazquez, D.N., Gonzalez-Gil, A.M., et al. (2020) Serum Irisin Levels, Endothelial Dysfunction, and Inflammation in Pediatric Patients with Type 2 Diabetes Melli-tus and Metabolic Syndrome. Journal of Diabetes Research, 2020, Article ID: 1949415. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ates, I., Arikan, M.F., Erdogan, K., et al. (2017) Factors Associated with Increased Irisin Levels in the Type 1 Diabetes Mellitus. Endocrine Regulations, 51, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, H.H., Zhang, X.W., Chen, W.K., et al. (2015) Relationship be-tween Serum Irisin Levels and Urinary Albumin Excretion in Patients with Type 2 Diabetes. Journal of Diabetes and Its Complications, 29, 384-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hu, W., Wang, R., Li, J., et al. (2016) Association of Irisin Concentrations with the Presence of Diabetic Nephropathy and Retinopathy. Annals of Clinical Biochemistry, 53, 67-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xin, C., Liu, J., Zhang, J., et al. (2016) Irisin Improves Fatty Acid Oxidation and Glucose Utilization in Type 2 Diabetes by Regulating the AMPK Signaling Pathway. International Jour-nal of Obesity, 40, 443-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ye, X., Shen, Y., Ni, C., et al. (2019) Irisin Reverses Insulin Resistance in C2C12 Cells via the p38-MAPK-PGC-1α Pathway. Peptides, 119, Article ID: 170120. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Liu, T.Y., Shi, C.X., Gao, R., et al. (2015) Irisin Inhibits He-patic Gluconeogenesis and Increases Glycogen Synthesis via the PI3K/Akt Pathway in Type 2 Diabetic Mice and Hepatocytes. Clinical Science, 129, 839-850. [Google Scholar] [CrossRef]
|
|
[38]
|
Zheng, S., Chen, N., Kang, X., et al. (2022) Irisin Alleviates FFA In-duced β-Cell Insulin Resistance and Inflammatory Response through Activating PI3K/AKT/FOXO1 Signaling Pathway. Endocrine, 75, 740-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liu, S., Du, F., Li, X., et al. (2017) Effects and Underlying Mechanisms of Irisin on the Proliferation and Apoptosis of Pancreatic β Cells. PLOS ONE, 12, e0175498. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Norman, D., Drott, C.J., Carlsson, P.O. and Espes, D. (2022) Irisin-A Pancreatic Islet Hormone. Biomedicines, 10, Article 258. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Guo, W., Zhang, B. and Wang, X. (2020) Lower Irisin Levels in Coronary Artery Disease: A Meta-Analysis. Minerva Endocrinologica, 45, 61-69. [Google Scholar] [CrossRef]
|
|
[42]
|
Pan, J.A., Zhang, H., Yu, Q., et al. (2021) Association of Circulating Irisin Levels and the Characteristics and Prognosis of Coronary Artery Disease. The American Journal of the Medical Sciences, 362, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Remuzgo-Martínez, S., Rueda-Gotor, J., Pulito-Cueto, V., et al. (2022) Irisin as a Novel Biomarker of Subclinical Atherosclerosis, Cardiovascular Risk and Severe Disease in Axial Spondyloarthritis. Frontiers in Immunology, 13, Article 894171. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hisamatsu, T., Miura, K., Arima, H., et al. (2018) Relationship of Serum Irisin Levels to Prevalence and Progression of Coronary Artery Calcification: A Prospective, Population-Based Study. International Journal of Cardiology, 267, 177-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, J., Li, K., Shao, J., et al. (2022) Irisin Suppresses Nicotine-Mediated Atherosclerosis by Attenuating Endothelial Cell Migration, Proliferation, Cell Cycle Arrest, and Cell Senescence. Frontiers in Cardiovascular Medicine, 9, Article 851603. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Song, H., Wu, F., Zhang, Y., et al. (2014) Irisin Promotes Human Umbilical Vein Endothelial Cell Proliferation through the ERK Signaling Pathway and Partly Suppresses High Glucose-Induced Apoptosis. PLOS ONE, 9, e110273. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, M., Xu, Y. and Jiang, L. (2019) Irisin Attenuates Oxi-dized Low-Density Lipoprotein Impaired Angiogenesis through AKT/mTOR/S6K1/Nrf2 Pathway. Journal of Cellular Physiology, 234, 18951-18962. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Evans, C.E., Iruela-Arispe, M.L. and Zhao, Y.Y. (2021) Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. The American Journal of Pathology, 191, 52-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
De Meneck, F., Victorino De Souza, L., Oliveira, V. and do Franco, M.C. (2018) High Irisin Levels in Overweight/Obese Children and Its Positive Correlation with Metabolic Pro-file, Blood Pressure, and Endothelial Progenitor Cells. Nutrition, Metabolism, and Cardiovascular Diseases, 28, 756-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhu, G., Wang, J., Song, M., et al. (2016) Irisin Increased the Number and Improved the Function of Endothelial Progenitor Cells in Diabetes Mellitus Mice. Journal of Cardiovascu-lar Pharmacology, 68, 67-73. [Google Scholar] [CrossRef]
|
|
[51]
|
Hou, N., Han, F. and Sun, X. (2015) The Relationship be-tween Circulating Irisin Levels and Endothelial Function in Lean and Obese Subjects. Clinical Endocrinology, 83, 339-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Li, M., Qian, M., Kyler, K. and Xu, J. (2021) Adipose Tis-sue-Endothelial Cell Interactions in Obesity-Induced Endothelial Dysfunction. Frontiers in Cardiovascular Medicine, 8, Article 681581. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lu, J., Xiang, G., Liu, M., et al. (2015) Irisin Protects against En-dothelial Injury and Ameliorates Atherosclerosis in Apolipoprotein E-Null Diabetic Mice. Atherosclerosis, 243, 438-448. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Mazur-Bialy, A.I., Kozlowska, K., Pochec, E., et al. (2018) Myokine Irisin-Induced Protection against Oxidative Stress in vitro. Involvement of Heme Oxygenase-1 and An-tioxidazing Enzymes Superoxide Dismutase-2 and Glutathione Peroxidase. Journal of Physiology and Pharmacology, 69, 117-125.
|
|
[55]
|
Park, K.H., Zaichenko, L., Brinkoetter, M., et al. (2013) Circulating Irisin in Relation to Insulin Re-sistance and the Metabolic Syndrome. The Journal of Clinical Endocrinology and Metabolism, 98, 4899-4907. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Yang, S., Xiao, F., Pan, L., et al. (2015) Association of Serum Irisin and Body Composition with Chronic Kidney Disease in Obese Chinese Adults: A Cross-Sectional Study. BMC Nephrology, 16, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Oelmann, S., Nauck, M., Völzke, H., et al. (2016) Circulating Irisin Concentrations Are Associated with a Favourable Lipid Profile in the General Population. PLOS ONE, 11, e0154319. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xiong, X.Q., Chen, D., Sun, H.J., et al. (2015) FNDC5 Overexpression and Irisin Ameliorate Glucose/Lipid Metabolic Derangements and Enhance Lipolysis in Obesity. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1852, 1867-1875. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Li, H., Shen, J., Wu, T., et al. (2019) Irisin Is Controlled by Far-nesoid X Receptor and Regulates Cholesterol Homeostasis. Frontiers in Pharmacology, 10, Article 548. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Tang, H., Yu, R., Liu, S., et al. (2016) Irisin Inhibits Hepatic Cho-lesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine, 6, 139-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ma, E.B., Sahar, N.E., Jeong, M. and Huh, J.Y. (2019) Irisin Exerts Inhibitory Effect on Adipogenesis through Regulation of Wnt Signaling. Frontiers in Physiology, 10, Article 1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Nassir, F. (2022) NAFLD: Mechanisms, Treatments, and Bi-omarkers. Biomolecules, 12, Article 824. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Tilg, H., Adolph, T.E. and Moschen, A.R. (2021) Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited after a Decade. Hepatology, 73, 833-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Cernea, S. and Raz, I. (2021) NAFLD in Type 2 Diabetes Mellitus: Still Many Challenging Questions. Diabetes/Metabolism Research and Reviews, 37, e3386. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Polyzos, S.A., Kountouras, J., Anastasilakis, A.D., et al. (2014) Irisin in Patients with Nonalcoholic Fatty Liver Disease. Metabolism: Clinical and Experimental, 63, 207-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Canivet, C.M., Bonnafous, S., Rousseau, D., et al. (2020) He-patic FNDC5 Is a Potential Local Protective Factor against Non-Alcoholic Fatty Liver. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article 165705. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Zhang, H.J., Zhang, X.F., Ma, Z.M., et al. (2013) Irisin Is In-versely Associated with Intrahepatic Triglyceride Contents in Obese Adults. Journal of Hepatology, 59, 557-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
So, W.Y. and Leung, P.S. (2016) Irisin Ameliorates Hepatic Glu-cose/Lipid Metabolism and Enhances Cell Survival in Insulin-Resistant Human HepG2 Cells through Adenosine Mono-phosphate-Activated Protein Kinase Signaling. The International Journal of Biochemistry & Cell Biology, 78, 237-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zhang, J., Ren, Y., Bi, J., et al. (2020) Involvement of Kindlin-2 in Irisin’s Protection against Ischaemia Reperfusion-Induced Liver Injury in High-Fat Diet-Fed Mice. Journal of Cellular and Molecular Medicine, 24, 13081-13092. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Park, M.J., Kim, D.I., Choi, J.H., et al. (2015) New Role of Irisin in Hepatocytes: The Protective Effect of Hepatic Steatosis in vitro. Cellular Signalling, 27, 1831-1839. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zhu, W., Sahar, N.E., Javaid, H.M.A., et al. (2021) Exer-cise-Induced Irisin Decreases Inflammation and Improves NAFLD by Competitive Binding with MD2. Cells, 10, Article 3306. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Liu, T.Y., Xiong, X.Q., Ren, X.S., et al. (2016) FNDC5 Allevi-ates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes, 65, 3262-3275. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Litwic, A.E., Westbury, L.D., Ward, K., et al. (2021) Adiposity and Bone Microarchitecture in the GLOW Study. Osteoporosis International, 32, 689-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Ali, D., Tencerova, M., Figeac, F., et al. (2022) The Patho-physiology of Osteoporosis in Obesity and Type 2 Diabetes in Aging Women and Men: The Mechanisms and Roles of Increased Bone Marrow Adiposity. Frontiers in Endocrinology, 13, Article 981487. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Colaianni, G., Notarnicola, A., Sanesi, L., et al. (2017) Irisin Lev-els Correlate with Bone Mineral Density in Soccer Players. Journal of Biological Regulators and Homeostatic Agents, 31, 21-28.
|
|
[76]
|
Faienza, M.F., Brunetti, G., Sanesi, L., et al. (2018) High Irisin Levels Are Associated with Better Glycemic Control and Bone Health in Children with Type 1 Diabetes. Diabetes Research and Clinical Practice, 141, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Serbest, S., Tiftikçi, U., Tosun, H.B. and Kısa, Ü. (2017) The Irisin Hormone Profile and Expression in Human Bone Tissue in the Bone Healing Process in Patients. Medical Science Monitor, 23, 4278-4283. [Google Scholar] [CrossRef]
|
|
[78]
|
Zhu, X., Li, X., Wang, X., et al. (2021) Irisin Deficiency Disturbs Bone Metabolism. Journal of Cellular Physiology, 236, 664-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Qiao, X., Nie, Y., Ma, Y., et al. (2016) Irisin Promotes Osteoblast Proliferation and Differentiation via Activating the MAP Kinase Signaling Pathways. Scientific Reports, 6, Article No. 18732. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Storlino, G., Colaianni, G., Sanesi, L., et al. (2020) Irisin Prevents Disuse-Induced Osteocyte Apoptosis. Journal of Bone and Miner-al Research, 35, 766-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Narayanan, S.A., Metzger, C.E., Bloomfield, S.A., et al. (2018) Inflammation-Induced Lymphatic Architecture and Bone Turnover Changes Are Ameliorated by Irisin Treatment in Chronic Inflammatory Bowel Disease. FASEB Journal, 32, 4848-4861. [Google Scholar] [CrossRef]
|
|
[82]
|
Leblanc, A., Matsumoto, T., Jones, J., et al. (2013) Bisphosphonates as a Supplement to Exercise to Protect Bone during Long-Duration Spaceflight. Osteoporosis International, 24, 2105-2114. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Colaianni, G., Mongelli, T., Cuscito, C., et al. (2017) Irisin Prevents and Restores Bone Loss and Muscle Atrophy in Hind-Limb Suspended Mice. Scientific Reports, 7, Arti-cle No. 2811. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Colucci, S., Colaianni, G., Brunetti, G., et al. (2020) Irisin Prevents Microgravity-Induced Impairment of Osteoblast Differentiation in Vitro during the Space Flight CRS-14 Mission. FASEB Journal, 34, 10096-10106. [Google Scholar] [CrossRef]
|