|
[1]
|
Liu, Y., Cui, B., Pi, C., et al. (2021) Analysis of Prognostic Risk Factors of Bloodstream Infections in Beijing Communities: A Retro-spective Study from 2015 to 2019. Mediterranean Journal of Hematology and Infectious Diseases, 13, e2021060. [Google Scholar] [CrossRef]
|
|
[2]
|
Mponponsuo, K., Leal, J., Spackman, E., et al. (2022) Mathematical Model of the Cost-Effectiveness of the BioFire FilmArray Blood Culture Identification (BCID) Panel Molecular Rapid Diagnostic Test Compared with Conventional Methods for Identification of Escherichia coli Bloodstream Infection. Journal of Antimicrobial Chemotherapy, 77, 507-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
中国医疗保健国际交流促进会临床微生物与感染分会, 中华医学会检验医学分会临床微生物学组, 中华医学会微生物学和免疫学分会临床微生物学组. 血液培养技术用于血流感染诊断临床实践专家共识[J]. 中华检验医学杂志, 2022, 45(2): 105-121.
|
|
[4]
|
杜冰钰, 赵蕊, 王欣慧, 等. 南京地区2130株血流感染病原菌的分布及耐药监测[J]. 中国卫生检验杂志, 2022, 32(18): 2177-2180.
|
|
[5]
|
Yoo, I.Y., Ha, S.I., Huh, H.J., et al. (2024) Evaluation of a Modified Protocol for the SepsiPrep Kit for Direct Identification and Antimicrobial Susceptibility Testing from Positive Blood Culture Using BACTEC Plus and BacT/Alert Blood Culture Bottles. Annals of Laboratory Medicine, 44, 183-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
陈凯妮, 庞彩莲, 吴品, 等. 血培养病原菌报阳时间、菌群分布及耐药性分析[J]. 河南医学研究, 2021, 30(32): 6097-6100.
|
|
[7]
|
Scheer, C.S., Fuchs, C., Gründling, M., et al. (2019) Impact of Antibiotic Administra-tion on Blood Culture Positivity at the Beginning of Sepsis: A Prospective Clinical Cohort Study. Clinical Microbiology and Infection, 25, 326-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fabre, V., Sharara, S.L., Salinas, A.B., et al. (2020) Does This Patient Need Blood Cultures? A Scoping Review of Indications for Blood Cultures in Adult Nonneutropenic Inpatients. Clinical Infectious Diseases, 71, 1339-1347. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fida, M., Wolf, M.J., Hamdi, A., et al. (2021) Detection of Pathogenic Bacteria from Septic Patients Using 16S Ribosomal RNA Gene-Targeted Metagenomic Sequencing. Clinical Infectious Diseases, 73, 1165-1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y., Jin, Y., Bai, Y., et al. (2020) Rapid Method for Direct Identification of Posi-tive Blood Cultures by MALDI-TOF MS. Experimental and Therapeutic Medicine, 20, Article No. 235. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, M., Wu, Y., Kudinha, T., et al. (2021) Comprehensive Pathogen Identification, Antibiotic Resistance, and Virulence Genes Prediction Directly from Simulated Blood Samples and Positive Blood Cultures by Na-nopore Metagenomic Sequencing. Frontiers in Genetics, 12, Article 620009. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Peri, A.M., Harris, P.N.A. and Paterson, D.L. (2022) Culture-Independent Detection Systems for Bloodstream Infection. Clinical Microbiology and Infection, 28, 195-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Eichenberger, E.M., de Vries, C.R., Ruffin, F., et al. (2022) Microbial Cell-Free DNA Identifies Etiology of Bloodstream Infections, Persists Longer than Conventional Blood Cultures, and Its Duration of Detection Is Associated with Metastatic Infection in Patients with Staphylococcus aureus and Gram-Negative Bacteremia. Clinical Infectious Diseases, 74, 2020-2027. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Buehler, S.S., Madison, B., Snyder, S.R., et al. (2016) Effectiveness of Practices to Increase Timeliness of Providing Targeted Therapy for Inpatients with Bloodstream Infections: A Laboratory Medicine Best Practices Systematic Review and Meta-Analysis. Clinical Microbiology Re-views, 29, 59-103. [Google Scholar] [CrossRef]
|
|
[15]
|
Rydzak, T., Groves, R.A., Zhang, R., et al. (2022) Metabolic Preference Assay for Rapid Diagnosis of Bloodstream Infections. Nature Communications, 13, Article No. 2332. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
李爽, 杜延召, 周超, 等. 2051株血流感染病原菌分布及耐药分析[J]. 中国老年保健医学, 2021, 19(5): 99-104.
|
|
[17]
|
吴富炜, 王圆圆, 杨靖娴. 短时固相培养法联合MALDI-TOF MS快速鉴定含活性炭阳性血培养标本[J]. 标记免疫分析与临床, 2020, 27(12): 2176-2180.
|
|
[18]
|
Bianco, G., Comini, S., Boattini, M., et al. (2022) MALDI-TOF MS-Based Approaches for Direct Identification of Gram-Negative Bacteria and Bla KPC-Carrying Plasmid Detection from Blood Cultures: A Three-Year Single-Centre Study and Proposal of a Diagnostic Algorithm. Microorganisms, 11, Article 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kim, K.J., Yun, S.G., Cho, Y., et al. (2023) Evaluation of a Sterile, Fil-ter-Based, In-House Method for Rapid Direct Bacterial Identification and Antimicrobial Susceptibility Testing Using Positive Blood Culture. European Journal of Clinical Microbiology & Infectious Diseases, 42, 691-700. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ponderand, L., Pavese, P., Maubon, D., Giraudon, E., et al. (2020) Evaluation of Rapid Sepsityper® Protocol and Specific MBT-Sepsityper Module (Bruker Daltonics) for the Rapid Diagnosis of Bacteremia and Fungemia by MALDI-TOF MS. Annals of Clinical Microbiology and Antimicrobials, 19, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Azrad, M., Keness, Y., Nitzan, O., et al. (2019) Cheap and Rapid In-House Method for Direct Identification of Positive Blood Cultures by MALDI-TOF MS Technology. BMC Infectious Diseases, 19, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
许雨乔, 文怡, 张晓慧, 等. 质谱直接鉴定血培养阳性菌的前处理方法评估[J]. 南京医科大学学报(自然科学版), 2022, 42(2): 233-238.
|
|
[23]
|
胡继红, 马筱玲, 王辉, 等. MALDI-TOF MS在临床微生物鉴定中的标准化操作专家共识[J]. 中华检验医学杂志, 2019, 42(4): 241-249.
|
|
[24]
|
马立艳, 孙伟, 苏建荣. MALDI-TOF MS结合短时培养法在阳性血培养病原菌鉴定中的临床应用[J]. 临床和实验医学杂志, 2020, 19(2): 223-225.
|
|
[25]
|
Zengin Canalp, H. and Bayraktar, B. (2021) Direct Rapid Identification from Positive Blood Cultures by MALDI-TOF MS: Specific Focus on Turna-round Times. Microbiology Spectrum, 9, e01103-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Özenci, V., et al. (2020) The Impact of Delayed Analysis of Positive Blood Cul-tures on the Performance of Short-Term Culture Followed by MALDI-TOF MS. Journal of Microbiological Methods, 177, Article ID: 106027. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cherkaoui, A., Renzi, G., Azam, N., et al. (2020) Rapid Identification by MALDI-TOF MS and Antimicrobial Disk Diffusion Susceptibility Testing for Positive Blood Cultures after a Short Incubation on the WASPLab. European Journal of Clinical Microbiology & Infectious Diseases, 39, 1063-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Bellangera, P., Gbaguidi-Haore, H., Liapis, E., et al. (2019) Rapid Identifica-tion of Candida sp. by MALDITOF Mass Spectrometry Subsequent to Short-Term Incubation on a Solid Medium. APMIS, 127, 217-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
侯伟伟, 江涟, 李冬. MALDI-TOF MS直接鉴定血培养阳性病原的临床应用[J]. 检验医学, 2021, 36(4): 424-429.
|
|
[30]
|
张丽娜, 陈莎, 杨柳, 等. 渗透压选择性裂解法在MALDI-TOF MS直接鉴定血培养阳性标本中的应用[J]. 临床检验杂志, 2020, 38(11): 858-860, 866.
|
|
[31]
|
Chen, X.F., Hou, X., Xiao, M., et al. (2021) Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Mi-croorganisms: A Review. Microorganisms, 9, Article 1536. [Google Scholar] [CrossRef] [PubMed]
|