|
[1]
|
Zou, C., Zhao, Q., Zhang, G. and Xiong, B. (2016) Energy Revolution: From a Fossil Energy Era to a New Energy Era. Natural Gas Industry B, 3, 1-11. [Google Scholar] [CrossRef]
|
|
[2]
|
Lu, Y., Chen, H., Wang, L., Yu, Z., Huang, Y., Yu, X., Wang, Y. and Roskilly, A.P. (2021) Energy Storage Driving towards a Clean Energy Future. Energy Reports, 7, 8128-8130. [Google Scholar] [CrossRef]
|
|
[3]
|
Kushnir, D. and Sandén, B.A. (2011) Multi-Level Energy Analysis of Emerging Technologies: A Case Study in New Materials for Lithium Ion Batteries. Journal of Cleaner Production, 19, 1405-1416. [Google Scholar] [CrossRef]
|
|
[4]
|
Schmuch, R., Wagner, R., Hörpel, G., Placke, T. and Winter, M. (2018) Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries. Nature Energy, 3, 267-278. [Google Scholar] [CrossRef]
|
|
[5]
|
Tarascon J.M. and Armand, M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 416, 359-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y. and Zhang, J.G. (2014) Lithium Metal Anodes for Rechargeable Batteries. Energy & Environmental Science, 7, 513-537. [Google Scholar] [CrossRef]
|
|
[7]
|
Wang, R., Cui, W., Chu, F. and Wu, F. (2020) Lithium Metal Anodes: Present and Future. Journal of Energy Chemistry, 48, 145-159. [Google Scholar] [CrossRef]
|
|
[8]
|
Ghazi, Z.A., Sun, Z., Sun, C., Qi, F., An, B., Li, F. and Cheng, H.M. (2019) Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small, 15, Article ID: 1900687. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fang, C., Wang, X. and Meng, Y.S. (2019) Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 1, 152-158. [Google Scholar] [CrossRef]
|
|
[10]
|
Whittingham, M.S. (2004) Lithium Batteries and Cathode Materials. Chemical Review, 104, 4271-4301. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Winter, M., Barnett, B. and Xu, K. (2018) Before Li ion Batteries. Chemical Review, 118, 11433-11456. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhamu, A., Chen, G., Liu, C., Neff, D., Fang, Q., Yu, Z., Xiong, W., Wang, Y., Wang, X. and Jang, B.Z. (2012) Reviving Rechargeable Lithium Metal Batteries: Enabling Next-Generation High-Energy and High-Power Cells. Energy & Environmental Science, 5, 5701-5707. [Google Scholar] [CrossRef]
|
|
[13]
|
Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, H., Yang, Y., Boyle, D.T., Jeong, Y.K., Xu, R., De Vasconcelos, L.S., Huang, Z., Wang, H., Wang, H., Huang, W., Li, H., Wang, J., Gu, H., Matsumoto, R., Motohashi, K., Nakayama, Y., Zhao, K. and Cui, Y. (2021) Free-Standing Ultrathin Lithium Metal-Graphene Oxide Host Foils with Controllable Thickness for Lithium Batteries. Nature Energy, 6, 790-798. [Google Scholar] [CrossRef]
|
|
[15]
|
Schnell, J., Knörzer, H., Imbsweiler, A.J. and Reinhart, G. (2020) Solid versus Liquid—A Bottom-Up Calculation Model to Analyze the Manufacturing Cost of Future High-Energy Batteries. Energy Technology, 8, Article ID: 1901237. [Google Scholar] [CrossRef]
|
|
[16]
|
Yao, W., Zou, P., Wang, M., Zhan, H., Kang, F. and Yang, C. (2021) Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 4, 601-631. [Google Scholar] [CrossRef]
|
|
[17]
|
Louli, A.J., Genovese, M., Weber, R., Hames, S.G., Logan, E.R. and Dahn, J.R. (2019) Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 166, A1291-A1299. [Google Scholar] [CrossRef]
|
|
[18]
|
Lin, L., Qin, K., Hu, Y.S., Li, H., Huang, X., Suo, L. and Chen, L. (2022) A Better Choice to Achieve High Volumetric Energy Density: Anode-Free Lithium-Metal Batteries. Advance Materials, 34, e2110323. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F. and Robertson, J.D. (1993) Fabrication and Characterization of Amorphous Lithium Electrolyte Thin Films and Rechargeable Thin-Film Batteries. Journal of Power Sources, 43, 103-110. [Google Scholar] [CrossRef]
|
|
[20]
|
Qian, J., Adams, B.D., Zheng, J., Xu, W., Henderson, W.A., Wang, J., Bowden, M.E., Xu, S., Hu, J. and Zhang, J.G. (2016) Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 26, 7094-7102. [Google Scholar] [CrossRef]
|
|
[21]
|
Weber, R., Genovese, M., Louli, A.J., Hames, S., Martin, C., Hill, I.G. and Dahn, J.R. (2019) Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nature Energy, 4, 683-689. [Google Scholar] [CrossRef]
|
|
[22]
|
Liu, S., Jiao, K. and Yan, J. (2023) Prospective Strategies for Extending Long-Term Cycling Performance of Anode-Free Lithium Metal Batteries. Energy Storage Materials, 54, 689-712. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhang, J.G. (2019) Anode-Less. Nature Energy, 4, 637-638. [Google Scholar] [CrossRef]
|
|
[24]
|
Cheng, X.B., Zhang, R., Zhao, C.Z. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Review, 117, 10403-10473. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cheng, X.B., Yan, C., Zhang, X.Q., Liu, H. and Zhang, Q. (2018) Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes. ACS Energy Letters, 3, 1564-1570. [Google Scholar] [CrossRef]
|
|
[26]
|
Hou, Z., Zhang, J., Wang, W., Chen, Q., Li, B. and Li, C. (2020) Towards High-Performance Lithium Metal Anodes via the Modification of Solid Electrolyte Interphases. Journal of Energy Chemistry, 45, 7-17. [Google Scholar] [CrossRef]
|
|
[27]
|
Yang, C., Fu, K., Zhang, Y., Hitz, E. and Hu, L. (2017) Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 29, Article ID: 1701169. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, S., Jiang, M., Xie, Y., Xu, H., Jia, J. and Li, J. (2018) Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Advanced Materials, 30, Article ID: 1706375. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cheng, X.B. and Zhang, Q. (2015) Dendrite-Free Lithium Metal Anodes: Stable Solid Electrolyte Interphases for High-Efficiency Batteries. Journal of Materials Chemistry A, 3, 7207-7209. [Google Scholar] [CrossRef]
|
|
[30]
|
Pu, J., Li, J., Zhang, K., Zhang, T., Li, C., Ma, H., Zhu, J., Braun, P.V., Lu, J. and Zhang, H. (2019) Conductivity and Lithiophilicity Gradients Guide Lithium Deposition to Mitigate Short Circuits. Nature Communications, 10, Article No. 1896. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Fang, C., Li, J., Zhang, M., Zhang, Y., Yang, F., Lee, J.Z., Lee, M.H., Alvarado, J., Schroeder, M.A., Yang, Y., Lu, B., Williams, N., Ceja, M., Yang, L., Cai, M., Gu, J., Xu, K., Wang, X. and Meng, Y.S. (2019) Quantifying Inactive Lithium in Lithium Metal Batteries. Nature, 572, 511-515. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Guan, X., Wang, A., Liu, S., Li, G., Liang, F., Yang, Y.W., Liu, X. and Luo, J. (2018) Controlling Nucleation in Lithium Metal Anodes. Small, 14, Article ID: 1801423. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pei, A., Zheng, G., Shi, F., Li, Y. and Cui, Y. (2017) Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters, 17, 1132-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Niu, C., Pan, H., Xu, W., Xiao, J., Zhang, J.G., Luo, L., Wang, C., Mei, D., Meng, J., Wang, X., Liu, Z., Mai, L. and Liu, J. (2019) Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions. Nature Nanotechnology, 14, 594-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, Y., Xiong, S., Wang, J., Jiao, X., Li, S., Zhang, C., Song, Z. and Song, J. (2019) Dendrite-Free Lithium Metal Anode Enabled by Separator Engineering via Uniform Loading of Lithiophilic Nucleation Sites. Energy Storage Materials, 19, 24-30. [Google Scholar] [CrossRef]
|
|
[36]
|
Nanda, S., Bhargav, A. and Manthiram, A. (2020) Anode-Free, Lean-Electrolyte Lithium-Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition. Joule, 4, 1121-1135. [Google Scholar] [CrossRef]
|
|
[37]
|
Chen, S., Xiang, Y., Zheng, G., Liao, Y., Ren, F., Zheng, Y., He, H., Zheng, B., Liu, X., Xu, N., Luo, M., Zheng, J. and Yang, Y. (2020) High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 12, 27794-27802. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yan, C., Cheng, X.B., Tian, Y., Chen, X., Zhang, X.Q., Li, W.J., Huang, J.Q. and Zhang, Q. (2018) Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. Advanced Materials, 30, Article ID: 1707629. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O. and Zhang, J.G. (2015) High Rate and Stable Cycling of Lithium Metal Anode. Nature Communications, 6, Article No. 6362. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ren, X., Zou, L., Cao, X., Engelhard, M.H., Liu, W., Burton, S.D., Lee, H., Niu, C., Matthews, B.E., Zhu, Z., Wang, C., Arey, B.W., Xiao, J., Liu, J., Zhang, J.G. and Xu, W. (2019) Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 3, 1662-1676. [Google Scholar] [CrossRef]
|
|
[41]
|
Zou, P., Wang, Y., Chiang, S.W., Wang, X., Kang, F. and Yang, C. (2018) Directing Lateral Growth of Lithium Dendrites in Micro-Compartmented Anode Arrays for Safe Lithium Metal Batteries. Nature Communications, 9, Article No. 464. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lin, D., Liu, Y., Liang, Z., Lee, H.W., Sun, J., Wang, H., Yan, K., Xie, J. and Cui, Y. (2016) Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes. Nature Nanotechnology, 11, 626-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Shen, K., Wang, Z., Bi, X., Ying, Y., Zhang, D., Jin, C., Hou, G., Cao, H., Wu, L., Zheng, G., Tang, Y., Tao, X. and Lu, J. (2019) Magnetic Field—Suppressed Lithium Dendrite Growth for Stable Lithium-Metal Batteries. Advanced Energy Materials, 9, Article ID: 1900260. [Google Scholar] [CrossRef]
|
|
[44]
|
Wang, H., Yu, Z., Kong, X., Kim, S.C., Boyle, D.T., Qin, J., Bao, Z. and Cui, Y. (2022) Liquid Electrolyte: The Nexus of Practical Lithium Metal Batteries. Joule, 6, 588-616. [Google Scholar] [CrossRef]
|
|
[45]
|
Woo, J.J., Maroni, V.A., Liu, G., Vaughey, J.T., Gosztola, D.J., Amine, K. and Zhang, Z. (2014) Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries beyond Lithium-Ion. Journal of the Electrochemical Society, 161, A827-A830. [Google Scholar] [CrossRef]
|
|
[46]
|
Pham, T.D., Bin Faheem, A., Kim, J., Oh, H.M. and Lee, K.K. (2022) Practical High-Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte. Small, 18, Article ID: 2107492. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Xue, W., Shi, Z., Huang, M., Feng, S., Wang, C., Wang, F., Lopez, J., Qiao, B., Xu, G., Zhang, W., Dong, Y., Gao, R., Shao-Horn, Y., Johnson, J.A. and Li, J. (2020) FSI-Inspired Solvent and “Full Fluorosulfonyl” Electrolyte for 4 V Class Lithium-Metal Batteries. Energy & Environmental Science, 13, 212-220. [Google Scholar] [CrossRef]
|
|
[48]
|
Yu, Z., Wang, H., Kong, X., Huang, W., Tsao, Y., Mackanic, D.G., Wang, K., Wang, X., Huang, W., Choudhury, S., Zheng, Y., Amanchukwu, C.V., Hung, S.T., Ma, Y., Lomeli, E.G., Qin, J., Cui, Y. and Bao, Z. (2020) Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries. Nature Energy, 5, 526-533. [Google Scholar] [CrossRef]
|
|
[49]
|
Zheng, J., Lochala, J.A., Kwok, A., Deng, Z.D. and Xiao, J. (2017) Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science, 4, Article ID: 1700032. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yamada, Y., Wang, J., Ko, S., Watanabe, E. and Yamada, A. (2019) Advances and Issues in Developing Salt-Concen- trated Battery Electrolytes. Nature Energy, 4, 269-280. [Google Scholar] [CrossRef]
|
|
[51]
|
Zheng, J., Yan, P., Mei, D., Engelhard, M.H., Cartmell, S.S., Polzin, B.J., Wang, C., Zhang, J.G. and Xu, W. (2016) Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer. Advanced Energy Materials, 6, Article ID: 1502151. [Google Scholar] [CrossRef]
|
|
[52]
|
Hagos, T.T., Thirumalraj, B., Huang, C.J., Abrha, L.H., Hagos, T.M., Berhe, G.B., Bezabh, H.K., Cherng, J., Chiu, S.F., Su, W.N. and Hwang, B.J. (2019) Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 11, 9955-9963. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez-Martínez, L.M. and Armand, M. (2018) Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie International Edition, 57, 15002-15027. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Sahalie, N.A., Assegie, A.A., Su, W.N., Wondimkun, Z.T., Jote, B.A., Thirumalraj, B., Huang, C.J., Yang, Y.W. and Hwang, B.J. (2019) Effect of Bifunctional Additive Potassium Nitrate on Performance of Anode Free Lithium Metal Battery in Carbonate Electrolyte. Journal of Power Sources, 437, Article ID: 226912. [Google Scholar] [CrossRef]
|
|
[55]
|
Hagos, T.M., Berhe, G.B., Hagos, T.T., Bezabh, H.K., Abrha, L.H., Beyene, T.T., Huang, C.J., Yang, Y.W., Su, W.N., Dai, H. and Hwang, B.J. (2019) Dual Electrolyte Additives of Potassium Hexafluorophosphate and Tris (Trimethylsilyl) Phosphite for Anode-Free Lithium Metal Batteries. Electrochimica Acta, 316, 52-59. [Google Scholar] [CrossRef]
|
|
[56]
|
Liu, Y., Gao, D., Xiang, H., Feng, X. and Yu, Y. (2021) Research Progress on Copper-Based Current Collector for Lithium Metal Batteries. Energy & Fuels, 35, 12921-12937. [Google Scholar] [CrossRef]
|
|
[57]
|
Yan, K., Lu, Z., Lee, H.W., Xiong, F., Hsu, P.C., Li, Y., Zhao, J., Chu, S. and Cui, Y. (2016) Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth. Nature Energy, 1, Article No. 16010. [Google Scholar] [CrossRef]
|
|
[58]
|
Pande, V. and Viswanathan, V. (2019) Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries. ACS Energy Letters, 4, 2952-2959. [Google Scholar] [CrossRef]
|
|
[59]
|
Lin, L., Suo, L., Hu, Y.S., Li, H., Huang, X. and Chen, L. (2021) Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery. Advanced Energy Materials, 11, Article ID: 2003709. [Google Scholar] [CrossRef]
|
|
[60]
|
Wang, X., He, Y., Tu, S., Fu, L., Chen, Z., Liu, S., Cai, Z., Wang, L., He, X. and Sun, Y. (2022) Li Plating on Alloy with Superior Electro-Mechanical Stability for High Energy Density Anode-Free Batteries. Energy Storage Materials, 49, 135-143. [Google Scholar] [CrossRef]
|
|
[61]
|
Zhang, S.S., Fan, X. and Wang, C. (2017) A Tin-Plated Copper Substrate for Efficient Cycling of Lithium Metal in an Anode-Free Rechargeable Lithium Battery. Electrochimica Acta, 258, 1201-1207. [Google Scholar] [CrossRef]
|
|
[62]
|
Chen, J., Xiang, J., Chen, X., Yuan, L., Li, Z. and Huang, Y. (2020) Li2S-Based Anode-Free Full Batteries with Modified Cu Current Collector. Energy Storage Materials, 30, 179-186. [Google Scholar] [CrossRef]
|
|
[63]
|
Yang, C.P., Yin, Y.X., Zhang, S.F., Li, N.W. and Guo, Y.G. (2015) Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton towards Long-Life Lithium Metal Anodes. Nature Communications, 6, Article No. 8058. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kwon, H., Lee, J.H., Roh, Y., Baek, J., Shin, D.J., Yoon, J.K., Ha, H.J., Kim, J.Y. and Kim, H.T. (2021) An Electron-Deficient Carbon Current Collector for Anode-Free Li-Metal Batteries. Nature Communications, 12, Article No. 5537. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Huang, W., Attia, P.M., Wang, H., Renfrew, S.E., Jin, N., Das, S., Zhang, Z., Boyle, D.T., Li, Y., Bazant, M.Z., Mccloskey, B.D., Chueh, W.C. and Cui, Y. (2019) Evolution of the Solid—Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy. Nano Letters, 19, 5140-5148. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Tamwattana, O., Park, H., Kim, J., Hwang, I., Yoon, G., Hwang, T.H., Kang, Y.S., Park, J., Meethong, N. and Kang, K. (2021) High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 6, 4416-4425. [Google Scholar] [CrossRef]
|
|
[67]
|
Assegie, A.A., Cheng, J.H., Kuo, L.M., Su, W.N. and Hwang, B.J. (2018) Polyethylene Oxide Film Coating Enhances Lithium Cycling Efficiency of an Anode-Free Lithium-Metal Battery. Nanoscale, 10, 6125-6138. [Google Scholar] [CrossRef]
|
|
[68]
|
Kang, T., Zhao, J., Guo, F., Zheng, L., Mao, Y., Wang, C., Zhao, Y., Zhu, J., Qiu, Y., Shen, Y. and Chen, L. (2020) Dendrite-Free Lithium Anodes Enabled by a Commonly Used Copper Antirusting Agent. ACS Applied Materials & Interfaces, 12, 8168-8175. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Assegie, A.A., Chung, C.C., Tsai, M.C., Su, W.N., Chen, C.W. and Hwang, B.J. (2019) Multilayer-Graphene-Stabilized Lithium Deposition for Anode-Free Lithium-Metal Batteries. Nanoscale, 11, 2710-2720. [Google Scholar] [CrossRef]
|
|
[70]
|
Tu, Z., Zachman, M.J., Choudhury, S., Khan, K.A., Zhao, Q., Kourkoutis, L.F. and Archer, L.A. (2018) Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 30, 5655-5662. [Google Scholar] [CrossRef]
|
|
[71]
|
Li, Q., Pan, H., Li, W., Wang, Y., Wang, J., Zheng, J., Yu, X., Li, H. and Chen, L. (2018) Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 3, 2259-2266. [Google Scholar] [CrossRef]
|
|
[72]
|
Wondimkun, Z.T., Beyene, T.T., Weret, M.A., Sahalie, N.A., Huang, C.J., Thirumalraj, B., Jote, B.A., Wang, D., Su, W.N., Wang, C.H., Brunklaus, G., Winter, M. and Hwang, B.J. (2020) Binder-Free Ultra-Thin Graphene Oxide as an Artificial Solid Electrolyte Interphase for Anode-Free Rechargeable Lithium Metal Batteries. Journal of Power Sources, 450, Article ID: 227589. [Google Scholar] [CrossRef]
|
|
[73]
|
Li, X., Cong, L., Ma, S., Shi, S., Li, Y., Li, S., Chen, S., Zheng, C., Sun, L., Liu, Y. and Xie, H. (2021) Low Resistance and High Stable Solid—Liquid Electrolyte Interphases Enable High-Voltage Solid-State Lithium Metal Batteries. Advanced Functional Materials, 31, Article ID: 2010611. [Google Scholar] [CrossRef]
|
|
[74]
|
Abrha, L.H., Zegeye, T.A., Hagos, T.T., Sutiono, H., Hagos, T.M., Berhe, G.B., Huang, C.J., Jiang, S.K., Su, W.N., Yang, Y.W. and Hwang, B.J. (2019) Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 Composite Film Derived Solid Electrolyte Interphase for Anode-Free Lithium Metal Battery. Electrochimica Acta, 325, Article ID: 134825. [Google Scholar] [CrossRef]
|
|
[75]
|
Zegeye, T.A., Su, W.N., Fenta, F.W., Zeleke, T.S., Jiang, S.K. and Hwang, B.J. (2020) Ultrathin Li6.75La3Zr1.75Ta0.25- O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-Free Lithium Metal Batteries. ACS Applied Energy Materials, 3, 11713-11723. [Google Scholar] [CrossRef]
|
|
[76]
|
Zhang, R., Cheng, X.B., Zhao, C.Z., Peng, H.J., Shi, J.L., Huang, J.Q., Wang, J., Wei, F. and Zhang, Q. (2016) Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Advanced Materials, 28, 2155-2162. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Seong, I.W., Hong, C.H., Kim, B.K. and Yoon, W.Y. (2008) The Effects of Current Density and Amount of Discharge on Dendrite Formation in the Lithium Powder Anode Electrode. Journal of Power Sources, 178, 769-773. [Google Scholar] [CrossRef]
|
|
[78]
|
Louli, A.J., Coon, M., Genovese, M., Degooyer, J., Eldesoky, A. and Dahn, J.R. (2021) Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 168, Article ID: 020515. [Google Scholar] [CrossRef]
|
|
[79]
|
Akolkar, R. (2014) Modeling Dendrite Growth during Lithium Electrodeposition at Sub-Ambient Temperature. Journal of Power Sources, 246, 84-89. [Google Scholar] [CrossRef]
|
|
[80]
|
Genovese, M., Louli, A.J., Weber, R., Martin, C., Taskovic, T. and Dahn, J.R. (2019) Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 166, A3342-A3347. [Google Scholar] [CrossRef]
|
|
[81]
|
Genovese, M., Louli, A.J., Weber, R., Hames, S. and Dahn, J.R. (2018) Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 165, A3321-A3325. [Google Scholar] [CrossRef]
|
|
[82]
|
Lu, B., Bao, W., Yao, W., Doux, J.M., Fang, C. and Meng, Y.S. (2022) Editors’ Choice—Methods—Pressure Control Apparatus for Lithium Metal Batteries. Journal of the Electrochemical Society, 169, Article ID: 070537. [Google Scholar] [CrossRef]
|
|
[83]
|
Fang, C., Lu, B., Pawar, G., Zhang, M., Cheng, D., Chen, S., Ceja, M., Doux, J.M., Musrock, H., Cai, M., Liaw, B. and Meng, Y.S. (2021) Pressure-Tailored Lithium Deposition and Dissolution in Lithium Metal Batteries. Nature Energy, 6, 987-994. [Google Scholar] [CrossRef]
|