|
[1]
|
Rothstein, D.M. (2016) Rifamycins, Alone and in Combination. Cold Spring Harbor Perspectives in Medicine, 6, a027011. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ojetti, V., Lauritano, E.C., Barbaro, F., Migneco, A., Ainora, M.E., Fontana, L., Gabrielli, M. and Gasbarrini, A. (2009) Rifaximin Pharmacology and Clinical Implications. Expert Opinion on Drug Metabolism & Toxicology, 5, 675-682. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Koo, H.L. and DuPont, H.L. (2010) Rifaximin: A Unique Gas-trointestinal-Selective Antibiotic for Enteric Diseases. Current Opinion in Gastroenterology, 26, 17-25. [Google Scholar] [CrossRef]
|
|
[4]
|
Caraceni, P., Vargas, V., Solà, E., Alessandria, C., de Wit, K., Trebicka, J., Angeli, P., Mookerjee, R.P., Durand, F., Pose, E., Krag, A., Bajaj, J.S., Beuers, U., Ginès, P. and Liverhope Consortium (2021) The Use of Rifaximin in Patients with Cirrhosis. Hepatology, 74, 1660-1673. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kogawa, A.C. and Salgado, H.R.N. (2018) Status of Rifaximin: A Review of Characteristics, Uses and Analytical Methods. Critical Reviews in Analytical Chemistry, 48, 459-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Barkin, J.A., Keihanian, T., Barkin, J.S., Antequera, C.M. and Moshiree, B. (2019) Preferential Usage of Rifaximin for the Treatment of Hydrogen-Positive Small Intestinal Bacte-rial Overgrowth. Revista de Gastroenterología del Perú, 39, 111-115. [Google Scholar] [CrossRef]
|
|
[7]
|
Li, H., Xiang, Y., Zhu, Z., Wang, W., Jiang, Z., Zhao, M., Cheng, S., Pan, F., Liu, D., Ho, R.C.M. and Ho, C.S.H. (2021) Rifaximin-Mediated Gut Microbiota Regulation Modulates the Function of Microglia and Protects against CUMS-Induced Depression-Like Behaviors in Adolescent Rat. Journal of Neuroinflammation, 18, Article No. 254. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Meng, D., Yang, M., Hu, L., Liu, T., Zhang, H., Sun, X., Wang, X., Chen, Y., Jin, Y. and Liu, R. (2022) Rifaximin Protects against Circadian Rhythm Disruption-Induced Cognitive Im-pairment through Preventing Gut Barrier Damage and Neuroinflammation. Journal of Neurochemistry, 163, 406-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dutta, D., Li, K., Methe, B. and Lim, S.H. (2020) Rifaximin on Intestinal-ly-Related Pathologic Changes in Sickle Cell Disease. American Journal of Hematology, 95, E83-E86. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Poo, S., Sriranganathan, D. and Segal, J.P. (2022) Network Meta-Analysis: Efficacy of Treatment for Acute, Chronic, and Prevention of Pouchitis in Ulcerative Colitis. European Journal of Gas-troenterology & Hepatology, 34, 518-528. [Google Scholar] [CrossRef]
|
|
[11]
|
Chinese Society of Infectious Diseases and Chinese Medi-cal Association (2022) Expert Consensus on Diagnosis and Treatment of End-Stage Liver Disease Complicated Infection (2021 Version). Chinese Journal of Hepatology, 30, 147-158.
|
|
[12]
|
Paik, J.M., Golabi, P., Younossi, Y., Mishra, A. and Younossi, Z.M. (2020) Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: The Growing Impact of NAFLD. Hepatology, 72, 1605-1616. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Parola, M. and Pinzani, M. (2019) Liver Fibrosis: Pathophysiology, Patho-genetic Targets and Clinical Issues. Molecular Aspects of Medicine, 65, 37-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
European Association for the Study of the Liver and European Association for the Study of the Liver (2019) EASL Clinical Practice Guidelines on Nutrition in Chronic Liver Disease. Journal of Hepatology, 70, 172-193.
|
|
[15]
|
Carrion, A.F. and Martin, P. (2021) Keeping Patients with End-Stage Liver Disease Alive While Awaiting Transplant: Management of Complications of Portal Hypertension. Clinical Liver Disease, 25, 103-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Haep, N., Florentino, R.M., Squires, J.E., Bell, A. and So-to-Gutierrez, A. (2021) The Inside-Out of End-Stage Liver Disease: Hepatocytes Are the Keystone. Seminars in Liver Disease, 41, 213-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shi, M., Meng, F.P. and Wang, F.S. (2021) Progress in Basic and Clinical and Clinical Research of a Cell Therapy for End-Stage Liver Disease. Chinese Journal of Hepatology, 29, 179-182.
|
|
[18]
|
Zeng, X., Sheng, X., Wang, P.Q., Xin, H.G., Guo, Y.B., Lin, Y., et al. (2021) Low-Dose Rifaximin Prevents Complications and Improves Survival in Patients with Decompensated Liver Cirrhosis. Hepatology Internation-al, 15, 155-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Trebicka, J., Macnaughtan, J., Schnabl, B., Shawcross, D.L. and Bajaj, J.S. (2021) The Microbiota in Cirrhosis and Its Role in Hepatic Decompensation. Journal of Hepatology, 75, S67-S81. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kang, Y., Kuang, X., Yan, H., Ren, P., Yang, X., Liu, H., Liu, Q., Yang, H., et al. (2023) A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbio-ta-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. mSystems, 8, e0112722. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Maslennikov, R., Pavlov, C. and Ivashkin, V. (2018) Small Intes-tinal Bacterial Overgrowth in Cirrhosis: Systematic Review and Meta-Analysis. Hepatology International, 12, 567-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Patel, V.C., Lee, S., McPhail, M.J.W., Da Silva, K., Guilly, S., Zamalloa, A., et al. (2022) Rifaximin-α Reduces Gut-Derived Inflammation and Mucin Degradation in Cirrhosis and En-cephalopathy: RIFSYS Randomised Controlled Trial. Journal of Hepatology, 76, 332-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kaji, K., Takaya, H., Saikawa, S., Furukawa, M., Sato, S., Kawa-ratani, H., et al. (2017) Rifaximin Ameliorates Hepatic Encephalopathy and Endotoxemia without Affecting the Gut Mi-crobiome Diversity. World Journal of Gastroenterology, 23, 8355-8366. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Brown, E.L., Xue, Q., Jiang, Z.D., Xu, Y. and Dupont, H.L. (2010) Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles. Antimicrobial Agents and Chemotherapy, 54, 388-396. [Google Scholar] [CrossRef]
|
|
[26]
|
Mencarelli, A., Renga, B., Palladino, G., Claudio, D., Ricci, P., Dis-trutti, E., et al. (2011) Inhibition of NF-κB by a PXR-Dependent Pathway Mediates Counter-Regulatory Activities of Rifaximin on Innate Immunity in Intestinal Epithelial Cells. European Journal of Pharmacology, 668, 317-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
de Wit, K., Beuers, U., Mukha, A., Stigter, E.C.A., Gulersonmez, M.C., Ramos Pittol, J.M., et al. (2023) Rifaximin Stimulates Nitrogen Detoxification by PXR-Independent Mechanisms in Human Small Intestinal Organoids. Liver International, 43, 649-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, F.D., Zhou, J. and Chen, E.Q. (2022) Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Frontiers in Pharmacology, 13, Article ID: 787748. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Israelsen, M., Madsen, B.S., Torp, N., Johansen, S., Hansen, C.D., Detlefsen, S., et al. (2023) Rifaximin-α for Liver Fibrosis in Patients with Alcohol-Related Liver Disease (GALA-RIF): A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet Gastroenterology and Hepatology, 8, 523-532. [Google Scholar] [CrossRef]
|
|
[30]
|
Enomoto, M., Kaji, K., Nishimura, N., Fujimoto, Y., Murata, K., Takeda, S., Tsuji, Y., et al. (2022) Rifaximin and Lubiprostone Mitigate Liver Fibrosis Development by Repairing Gut Barrier Function in Diet-Induced Rat Steatohepatitis. Digestive and Liver Disease, 54, 1392-1402. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Fujinaga, Y., Kawaratani, H., Kaya, D., Tsuji, Y., Ozutsumi, T., Furukawa, M., et al. (2020) Effective Combination Therapy of Angiotensin-II Receptor Blocker and Rifaximin for He-patic Fibrosis in Rat Model of Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences, 21, Article No. 5589. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jothimani, D., Rela, M. and Kamath, P.S. (2023) Liver Cirrhosis and Portal Hypertension: How to Deal with Esophageal Varices? Medical Clinics of North America, 107, 491-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ferral, H., Fimmel, C.J., Sonnenberg, A., Alonzo, M.J. and Aquisto, T.M. (2021) Transjugular Liver Biopsy with Hemodynamic Evaluation: Correlation between Hepatic Venous Pressure Gradient and Histologic Diagnosis of Cirrhosis. Journal of Clinical Imaging Science, 11, Article No. 25. [Google Scholar] [CrossRef]
|
|
[34]
|
Iwakiri, Y. and Trebicka, J. (2021) Portal Hypertension in Cirrhosis: Pathophysiological Mechanisms and Therapy. JHEP Reports, 3, Article ID: 100316. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rayes, N., Pilarski, T., Stockmann, M., Bengmark, S., Neuhaus, P. and Seehofer, D. (2012) Effect of Pre- and Probiotics on Liver Regeneration after Resection: A Randomised, Dou-ble-Blind Pilot Study. Beneficial Microbes, 3, 237-244. [Google Scholar] [CrossRef]
|
|
[36]
|
Arab, J.P., Martin-Mateos, R.M. and Shah, V.H. (2018) Gut-Liver Axis, Cirrhosis and Portal Hypertension: The Chicken and the Egg. Hepatology International, 12, 24-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kalambokis, G.N. and Tsianos, E.V. (2012) Rifaximin Reduces Endotoxemia and Improves Liver Function and Disease Severity in Patients with Decompensated Cirrhosis. Hepatology, 55, 655-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Vlachogiannakos, J., Saveriadis, A.S., Viazis, N., The-odoropoulos, I., Foudoulis, K., Manolakopoulos, S., Raptis, S. and Karamanolis, D.G. (2009) Intestinal Decontamination Improves Liver Haemodynamics in Patients with Alcohol-Related Decompensated Cirrhosis. Alimentary Pharmacology & Therapeutics, 29, 992-999. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Salehi, S., Tranah, T.H., Lim, S., Heaton, N., Heneghan, M., Aluvihare, V., Patel, V.C. and Shawcross, D.L. (2019) Rifaximin Reduces the Incidence of Spontaneous Bacterial Peritonitis, Variceal Bleeding and All-Cause Admissions in Patients on the Liver Transplant Waiting List. Alimentary Pharmacology & Therapeutics, 50, 435-441. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lim, Y.L., Kim, M.Y., Jang, Y.O., Baik, S.K. and Kwon, S.O. (2017) Rifaximin and Propranolol Combination Therapy Is More Effective than Propranolol Monotherapy for the Reduction of Portal Pressure: An Open Randomized Controlled Pilot Study. Gut and Liver, 11, 702-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Patidar, K.R. and Bajaj, J.S. (2015) Covert and Overt Hepatic Encephalopa-thy: Diagnosis and Management. Clinical Gastroenterology and Hepatology, 13, 2048-2061. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ridola, L., Faccioli, J., Nardelli, S., Gioia, S. and Riggio, O. (2020) Hepatic Encephalopathy: Diagnosis and Management. Journal of Translational Internal Medicine, 8, 210-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Coronel-Castillo, C.E., Contreras-Carmona, J., Frati-Munari, A.C., Uribe, M. and Méndez-Sánchez, N. (2020) Efficacy of Rifaximin in the Different Clinical Scenarios of Hepatic Encepha-lopathy. Revista de Gastroenterología de México, 85, 56-68. [Google Scholar] [CrossRef]
|
|
[44]
|
Tamai, Y., Iwasa, M., Eguchi, A., Shigefuku, R., Kamada, Y., Miyoshi, E. and Takei, Y. (2021) Rifaximin Ameliorates Intestinal Inflammation in Cirrhotic Patients with Hepatic En-cephalopathy. JGH Open, 5, 827-830. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, Z., Yuan, Q., Hu, X., Liao, J. and Kuang, J. (2022) Rifaximin Pro-tects SH-SY5Y Neuronal Cells from Iron Overload-Induced Cytotoxicity via Inhibiting STAT3/NF-κB Signaling. Cell Biology International, 46, 1062-1073. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Liang, A., Brar, S., Almaghrabi, M., Khan, M.Q., Qumosani, K. and Teriaky, A. (2023) Primary Prevention of Hepatic Encephalopathy Post-TIPS: A Systematic Review and Meta-Analysis. Medicine (Baltimore), 102, e35266. [Google Scholar] [CrossRef]
|
|
[47]
|
LBureau, C., Thabut, D., Jezequel, C., Archambeaud, I., D’Alteroche, L., Dharancy, S., et al. (2021) The Use of Rifaximin in the Prevention of Overt Hepatic Encephalopathy af-ter Transjugular Intrahepatic Portosystemic Shunt: A Randomized Controlled Trial. Annals of Internal Medicine, 174, 633-640. [Google Scholar] [CrossRef]
|
|
[48]
|
Yu, X., Jin, Y., Zhou, W., Xiao, T., Wu, Z., Su, J., et al. (2022) Rifaximin Modulates the Gut Microbiota to Prevent Hepatic Encephalopathy in Liver Cirrhosis without Impacting the Resistome. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 761192. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Fu, J., Gao, Y. and Shi, L. (2022) Combination Therapy with Rifaximin and Lactulose in Hepatic Encephalopathy: A Systematic Review and Meta-Analysis. PLOS ONE, 17, e0267647. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Aithal, G.P., Palaniyappan, N., China, L., Härmälä, S., Macken, L., Ryan, J.M., et al. (2021) Guidelines on the Management of Ascites in Cirrhosis. Gut, 70, 9-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zaccherini, G., Tufoni, M., Iannone, G. and Caraceni, P. (2021) Management of Ascites in Patients with Cirrhosis: An Update. Journal of Clinical Medicine, 10, Article No. 5226. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pedersen, J.S., Bendtsen, F. and Møller, S. (2015) Management of Cir-rhotic Ascites. Therapeutic Advances in Chronic Disease, 6, 124-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lv, X.Y., Ding, H.G., Zheng, J.F., Fan, C.L. and Li, L. (2020) Rifaximin Improves Survival in Cirrhotic Patients with Refractory Ascites: A Real-World Study. World Journal of Gas-troenterology, 26, 199-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hanafy, A.S. and Hassaneen, A.M. (2016) Rifaximin and Midodrine Improve Clinical Outcome in Refractory Ascites Including Renal Function, Weight Loss, and Short-Term Survival. Eu-ropean Journal of Gastroenterology & Hepatology, 28, 1455-1461. [Google Scholar] [CrossRef]
|
|
[55]
|
Yokoyama, K., Fukuda, H., Yamauchi, R., Higashi, M., Miyayama, T., Higashi, T., et al. (2022) Long-Term Effects of Rifaximin on Patients with Hepatic Encephalopathy: Its Possible Effects on the Improvement in the Blood Ammonia Concentration Levels, Hepatic Spare Ability and Refractory Ascites. Medicina (Kaunas), 58, Article No. 1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Dong, T., Aronsohn, A., Gautham, R.K. and Te, H.S. (2016) Rifaximin Decreases the Incidence and Severity of Acute Kidney Injury and Hepatorenal Syndrome in Cirrhosis. Diges-tive Diseases and Sciences, 61, 3621-3626. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Mostafa, T., Badra, G. and Abdallah, M. (2015) The Efficacy and the Immunomodulatory Effect of Rifaximin in Prophylaxis of Spontaneous Bacterial Peritonitis in Cirrhotic Egyptian Pa-tients. Turkish Journal of Gastroenterology, 26, 163-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ponziani, F.R., Gerardi, V., Pecere, S., D’Aversa, F., Lopetuso, L., et al. (2015) Effect of Rifaximin on Gut Microbiota Composi-tion in Advanced Liver Disease and Its Complications. World Journal of Gastroenterology, 21, 12322-12333. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Praharaj, D.L., Premkumar, M., Roy, A., Verma, N., Taneja, S., Duseja, A. and Dhiman, R.K. (2022) Rifaximin vs. Norfloxacin for Spontaneous Bacterial Peritonitis Prophylaxis: A Randomized Controlled Trial. Journal of Clinical and Experimental Hepatology, 12, 336-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Hasan, I., Rashid, T., Chirila, R.M., Ghali, P. and Wadei, H.M. (2021) Hepatorenal Syndrome: Pathophysiology and Evidence-Based Management Update. Romanian Journal of Inter-nal Medicine, 59, 227-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Francoz, C., Durand, F., Kahn, J.A., Genyk, Y.S. and Nadim, M.K. (2019) Hepatorenal Syndrome. Clinical Journal of the American Society of Nephrology, 14, 774-781. [Google Scholar] [CrossRef]
|
|
[62]
|
Schrier, R.W., Arroyo, V., Bernardi, M., Epstein, M., Henriksen, J.H. and Rodés, J. (1988) Peripheral Arterial Vasodilation Hypothesis: A Proposal for the Initiation of Renal Sodium and Water Retention in Cirrhosis. Hepatology, 8, 1151-1157. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wilde, B., Canbay, A. and Katsounas, A. (2023) Clinical and Pathophysiological Understanding of the Hepatorenal Syndrome: Still Wrong or Still Not Exactly Right? World Journal of Clinical Cases, 11, 1261-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Wang, M., Qin, T., Zhang, Y., Zhang, T., Zhuang, Z., Wang, Y., Ding, Y. and Peng, Y. (2022) Toll-Like Receptor 4 Signaling Pathway Mediates Both Liver and Kidney Injuries in Mice with Hepatorenal Syndrome. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 323, G461-G476. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Luo, M., Xie, P., Deng, X., Fan, J. and Xiong, L. (2023) Rifaximin Ameliorates Loperamide-Induced Constipation in Rats through the Regulation of Gut Microbiota and Serum Metabolites. Nutrients, 15, Article No. 4502. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Hari, A. (2021) Muscular Abnormalities in Liver Cirrhosis. World Jour-nal of Gastroenterology, 27, 4862-4878. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Tantai, X., Liu, Y., Yeo, Y.H., Praktiknjo, M., Mauro, E., Hama-guchi, Y., et al. (2022) Effect of Sarcopenia on Survival in Patients with Cirrhosis: A Meta-Analysis. Journal of Hepa-tology, 76, 588-599. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sato, S., Namisaki, T., Murata, K., Fujimoto, Y., Takeda, S., Enomoto, M., et al. (2021) The Association between Sarcopenia and Endotoxin in Patients with Alcoholic Cirrhosis. Medicine (Baltimore), 100, e27212. [Google Scholar] [CrossRef]
|
|
[69]
|
Jindal, A. and Jagdish, R.K. (2019) Sarcopenia: Ammonia Metabolism and Hepatic Encephalopathy. Clinical and Molecular Hepatology, 25, 270-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Qiu, J., Thapaliya, S., Runkana, A., Yang, Y., Tsien, C., Mohan, M.L., et al. (2013) Hyperammonemia in Cirrhosis Induces Transcriptional Regulation of Myostatin by an NF-κB-Mediated Mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110, 18162-18167. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Yao, J., Chang, L., Yuan, L. and Duan, Z. (2016) Nutrition Status and Small Intestinal Bacterial Overgrowth in Patients with Virus-Related Cirrhosis. Asia Pacific Journal of Clinical Nu-trition, 25, 283-291.
|
|
[72]
|
Maslennikov, R., Alieva, A., Poluektova, E., Zharikov, Y., Suslov, A., Letyagina, Y., et al. (2023) Sarcopenia in Cirrhosis: Prospects for Therapy Targeted to Gut Microbiota. World Journal of Gastroenterology, 29, 4236-4251. [Google Scholar] [CrossRef] [PubMed]
|