|
[1]
|
Nazari, M., Shiri, I., Hajianfar, G., et al. (2020) Noninvasive Fuhrman Grading of Clear Cell Renal Cell Carcinoma Us-ing Computed Tomography Radiomic Features and Machine Learning. La radiologia medica, 125, 754-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Minardi, D., Lucarini, G., Mazzucchelli, R., Milanese, G., Natali, D., Galosi, A.B., et al. (2005) Prognostic Role of Fuhrman Grade and Vascular Endothelial Growth Factor in pT1a Clear Cell Carcinoma in Partial Nephrectomy Specimens. Journal of Urology, 174, 1208-1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, X.S., Yao, L., Gong, K., Yu, W., He, Q., Zhou, L.Q., et al. (2012) Growth Pattern of Renal Cell Carcinoma (RCC) in Patients with Delayed Surgical Intervention. Journal of Cancer Research and Clinical Oncology, 138, 269-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sahni, V.A. and Silverman, S.G. (2014) Imaging Management of Incidentally Detected Small Renal Masses. Seminars in Interventional Radiology, 31, 9-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sun, J., Pan, L., Zha, T., Xing, W., Chen, J. and Duan, S. (2021) The Role of MRI Texture Analysis Based on Susceptibility-Weighted Imaging in Predicting Fuhrman Grade of Clear Cell Renal Cell Carcinoma. Acta Radiologica, 62, 1104-1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fuhrman, S.A., Lasky, L.C. and Limas, C. (2004) Prognostic Significance of Morphologic Parameters in Renal Cell Carcinoma. International Journal of Clinical Practice, 58, 333-336. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Donat, S.M., Diaz, M., Bishoff, J.T., Coleman, J.A., Dahm, P., Derweesh, I.H., et al. (2013) Follow-Up for Clinically Localized Renal Neoplasms: AUA Guideline. Journal of Urology, 190, 407-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Suzuki, K., Mizuno, R., Mikami, S., Tanaka, N., Kanao, K., Kiku-chi, E., et al. (2012) Prognostic Significance of High Nuclear Grade in Patients with Pathologic T1a Renal Cell Carcino-ma. Japanese Journal of Clinical Oncology, 42, 831-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hussain, M.A., Hamarneh, G. and Garbi, R. (2021) Learnable Image Histograms-Based Deep Radiomics for Renal Cell Carcinoma Grading and staging. Computerized Medical Imaging and Graphics, 90, Article ID: 101924. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Choi, S.Y., Sung, D.J., Yang, K.S., et al. (2016) Small (<4 cm) Clear Cell Renal Cell Carcinoma: Correlation between CT Findings and Histologic Grade. Abdominal Radiology, 41, 1160-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yi, X., Xiao, Q., Zeng, F., Yin, H., Li, Z., Qian, C., Wang, C., Lei, G., Xu, Q., Li, C., Li, M., Gong, G., Zee, C., Guan, X., Liu, L. and Chen, B.T. (2021) Computed Tomography Radiomics for Predicting Pathological Grade of Renal Cell Carcinoma. Frontiers in Oncology, 10, Article 570396. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chiarello, M.A., Mali, R.D. and Kang, S.K. (2018) Diag-nostic Accuracy of MRI for Detection of Papillary Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 211, 812-821. [Google Scholar] [CrossRef]
|
|
[13]
|
Woo, S., Suh, C.H., Kim, S.Y., Cho, J.Y. and Kim, S.H. (2017) Diag-nostic Performance of DWI for Differentiating High- From Low-Grade Clear Cell Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 209, W374-W381. [Google Scholar] [CrossRef]
|
|
[14]
|
Singh, H., Arora, G., Nayak, B., Sharma, A., Singh, G., Kumari, K., Jana, S., Patel, C., Pandey, A.K., Seth, A. and Kumar, R. (2020) Semi-Quantitative F-18-FDG PET/Computed Tomog-raphy Parameters for Prediction of Grade in Patients with Renal Cell Carcinoma and the Incremental Value of Diuretics. Nuclear Medicine Communications, 41, 485-493. [Google Scholar] [CrossRef]
|
|
[15]
|
Yu, W., Liang, G., Zeng, L., Yang, Y. and Wu, Y. (2021) Accuracy of CT Texture Analysis for Differentiating Low-Grade and High-Grade Renal Cell Carcinoma: Systematic Review and Meta-Analysis. BMJ Open, 11, e051470. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Goyal, A., Razik, A., Kandasamy, D., et al. (2019) Role of MR Texture Analysis in Histological Subtyping and Grading of Renal Cell Carcinoma: A Preliminary Study. Abdominal Ra-diology, 44, 3336-3349. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xing, J., Liu, Y., Wang, Z., Xu, A., Su, S., Shen, S. and Wang, Z. (2023) Incremental Value of Radiomics with Machine Learning to the Existing Prognostic Models for Predicting Out-come in Renal Cell Carcinoma. Frontiers in Oncology, 13, Article 1036734. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Greco, F., Beomonte Zobel, B., Di Gennaro, G. and Mallio, C.A. (2023) Advanced CT Imaging, Radiomics, and Artificial Intelligence to Evaluate Immune Checkpoint Inhibitors’ Effects on Metastatic Renal Cell Carcinoma. Applied Sciences, 13, Article 3779. [Google Scholar] [CrossRef]
|
|
[19]
|
Yu, G., Mao, N., Song, X., et al. (2022) Radiomics Model for Predict-ing TP53 Status Using CT and Machine Learning Approach in Laryngeal Squamous Cell Carcinoma. Frontiers in On-cology, 12, Article 823428. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Litvin, A.A., Burkin, D.A., Kropinov, A.A., et al. (2021) Radi-omics and Digital Image Texture Analysis in Oncology (Review). Sovremennye Tehnologii v Medicine, 13, 97-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Im-ages Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, Y., Zhang, X., Zhang, J., et al. (2023) MR Texture Analysis in Differentiation of Small and Very Small Renal Cell Carcinoma Subtypes. Abdominal Radiology, 48, 1044-1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ankur, G., Abdul, R., Devasenathipathy, K., et al. (2019) Role of MR Texture Analysis in Histological Subtyping and Grading of Renal Cell Carcinoma: A Preliminary Study. Ab-dominal Radiology, 44, 3336-3349. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wei, W., Cao, K.M., Jin, S.M., et al. (2020) Differentiation of Renal Cell Carcinoma Subtypes through MRI-Based Radiomics Analysis. European Radiology, 30, 5738-5747. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Uyen, N.H., Mirmomen, S.M., Osorio, M., et al. (2018) As-sessment of Multiphasic Contrast-Enhanced MR Textures in Differentiating Small Renal Mass Subtypes. Abdominal Ra-diology, 43, 3400-3409. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lim, C.S., Tirumani, S., van der Pol, C.B., Alessandrino, F., Sonpavde, G.P., Silverman, S.G. and Shinagare, A.B. (2019) Use of Quantitative T2-Weighted and Apparent Diffusion Coefficient Texture Features of Bladder Cancer and Extravesical Fat for Local Tumor Staging after Transurethral Resec-tion. American Journal of Roentgenology, 212, 1060-1069. [Google Scholar] [CrossRef]
|
|
[27]
|
van der Pol, C.B., Shinagare, A.B., Tirumani, S.H., Preston, M.A., Vangel, M.G. and Silverman, S.G. (2018) Bladder Cancer Local Staging: Multiparametric MRI Performance following Transurethral Resection. Abdominal Radiology, 43, 2412-2423. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, X., Zhang, X., Tian, Q., et al. (2017) Three-Dimensional Texture Features from Intensity and High-Order Derivative Maps for the Discrimination between Bladder Tumors and Wall Tissues via MRI. International Journal of Computer Assisted Radiology and Surgery, 12, 645-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, X., Yuan, B.R., Zhang, Y.D., Zhuang, J.T., Cai, L.K., Wu, Q.K., Cao, Q., Li, P.C., Lu, Q. and Sun, X.Y. (2022) Quantitative Multiparametric MRI as a Promising Tool for the As-sessment of Early Response to Neoadjuvant Chemotherapy in Bladder Cancer. European Journal of Radiology, 157, Ar-ticle ID: 110587. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Meng, X., Li, S., He, K., Hu, H., Feng, C., Li, Z. and Wang, Y. (2023) Evaluation of Whole-Tumor Texture Analysis Based on MRI Diffusion Kurtosis and Biparametric VI-RADS Model for Staging and Grading Bladder Cancer. Bioengineering, 10, Article 745. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Song, J., Yin, Y., Wang, H., Chang, Z., Liu, Z. and Cui, L. (2020) A Review of Original Articles Published in the Emerging Field of Radiomics. European Journal of Radiology, 127, Article ID: 108991. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Scalco, E. and Rizzo, G. (2017) Texture Analysis of Medical Im-ages for Radiotherapy Applications. The British Journal of Radiology, 90, Article ID: 20160642. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Stephan, U., Lucian, B., Annemarie, B., et al. (2020) Radiomics of Computed Tomography and Magnetic Resonance Imaging in Renal Cell Carcinoma—A Systematic Review and Me-ta-Analysis. European Radiology, 30, 3558-3566. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cui, E., Li, Z., Ma, C., et al. (2020) Predicting the ISUP Grade of Clear Cell Renal Cell Carcinoma with Multiparametric MR and Multiphase CT Radiomics. European Radiology, 30, 2912-2921. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yao, Z., Shuai, W., Yan, C. and Du, H.Q. (2021) Deep Learning with a Convolutional Neural Network Model to diFferentiate Renal Parenchymal Tumors: A Preliminary Study. Ab-dominal Radiology, 46, 3260-3268. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Xi, I.L., Zhao, Y., Wang, R., et al. (2020) Deep Learning to Dis-tinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Clinical Cancer Research, 26, 1944-1952. [Google Scholar] [CrossRef]
|
|
[37]
|
Meghan, G.L. (2020) Radiomics and Artificial Intelligence for Renal Mass Characterization. Radiologic Clinics, 58, 995-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Buch, K., Kuno, H., Qureshi, M.M., Li, B. and Sakai, O. (2018) Quantitative Variations in Texture Analysis Features Dependent on MRI Scanning Parameters: A Phantom Model. Journal of Applied Clinical Medical Physics, 19, 253-264. [Google Scholar] [CrossRef] [PubMed]
|