|
[1]
|
Thompson, W.O., Debski, R.E., Boardman, N.D., et al. (1996) A Biomechanical Analysis of Rotator Cuff Deficiency in a Cadaveric Model. The American Journal of Sports Medicine, 24, 286-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kurokawa, D., Sano, H., Nagamoto, H., et al. (2014) Muscle Activity Pattern of the Shoulder External Rotators Differs in Adduction and Abduction: An Analysis Using Positron Emission Tomography. Journal of Shoulder and Elbow Surgery, 23, 658-664. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Alrabaa, R.G., Lobao, M.H. and Levine, W.N. (2020) Rotator Cuff Injuries in Tennis Players. Current Reviews in Musculoskeletal Medicine, 13, 734-747. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Dillman, C.J., Fleisig, G.S. and Andrews, J.R. (1993) Biome-chanics of Pitching with Emphasis upon Shoulder Kinematics. Journal of Orthopaedic & Sports Physical Therapy, 18, 402-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Paavola, M., Kanto, K., Ranstam, J., et al. (2021) Sub-acromial Decompression versus Diagnostic Arthroscopy for Shoulder Impingement: A 5-Year Follow-Up of a Random-ised, Placebo Surgery Controlled Clinical Trial. British Journal of Sports Medicine, 55, 99-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Huegel, J., Williams, A.A. and Soslowsky, L.J. (2015) Rotator Cuff Biology and Biomechanics: A Review of Normal and Pathological Conditions. Current Rheumatology Reports, 17, Article No. 476. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hawkes, D.H., Alizadehkhaiyat, O., Fisher, A.C., et al. (2012) Normal Shoulder Muscular Activation and Co-Ordination during a Shoulder Elevation Task Based on Activities of Daily Living: An Electromyographic Study: Shoulder Muscular Co-Ordination during Elevation. Journal of Orthopaedic Re-search, 30, 53-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Desai, S.S. and Mata, H.K. (2017) Long Head of Biceps Tendon Pathology and Results of Tenotomy in Full-Thickness Reparable Rotator Cuff Tear. Arthroscopy, 33, 1971-1976. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zaki, Z., Ravanbod, R., Schmitz, M., et al. (2022) Comparison of Low Level and High Power Laser Combined with Kinesiology Taping on Shoulder Function and Musculoskeletal So-nography Parameters in Subacromial Impingement Syndrome: A Randomized Placebo-Controlled Trial. Physiotherapy Theory and Practice, 38, 2514-2525. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Neer, C.S. (1972) Anterior Acromioplasty for the Chronic Impingement Syndrome in the Shoulder: A Preliminary Report. The Journal of Bone and Joint Surgery, 54, 41-50. [Google Scholar] [CrossRef]
|
|
[11]
|
Bigliani, L.U., Ticker, J.B., Flatow, E.L., et al. (1991) The Relationship of Acromial Architecture to Rotator Cuff dIsease. Clinics in Sports Medicine, 10, 823-838. [Google Scholar] [CrossRef]
|
|
[12]
|
Braman, J.P., Zhao, K.D., Lawrence, R.L., et al. (2014) Shoulder Impingement Revisited: Evolution of Diagnostic Understanding in Orthopedic Surgery and Physical Therapy. Medical & Biological Engineering & Computing, 52, 211-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lin, D.J., Wong, T.T. and Kazam, J.K. (2018) Shoulder Injuries in the Overhead-Throwing Athlete: Epidemiology, Mechanisms of Injury, and Imaging Findings. Radiology, 286, 370-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Almond, P.R. (1993) The X-Ray Centennial—Thompsons and Thomsons. Medical Physics, 20, 275-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hunter, D.J., Rivett, D.A., McKeirnan, S., et al. (2020) Relationship be-tween Shoulder Impingement Syndrome and Thoracic Posture. Physical Therapy, 100, 677-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liotard, J.P., Cochard, P. and Walch, G. (1998) Critical Analysis of the Su-praspinatus Outlet View: Rationale for a Standard Scapular Y-View. Journal of Shoulder and Elbow Surgery, 7, 134-139. [Google Scholar] [CrossRef]
|
|
[17]
|
Tang, Y., Hou, J., Li, Q., et al. (2019) The Effectiveness of Using the Critical Shoulder Angle and Acromion Index for Predicting Rotator Cuff Tears: Accurate Diagnosis Based on Standard and Nonstandard Anteroposterior Radiographs. Arthroscopy, 35, 2553-2561. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Garcia, G.H., Liu, J.N., Degen, R.M., et al. (2017) Higher Criti-cal Shoulder Angle Increases the Risk of Retear after Rotator Cuff Repair. Journal of Shoulder and Elbow Surgery, 26, 241-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
朱迎春, 贾学文, 宓云峰, 等. 肩峰形态影像学分型在肩袖损伤诊治中的应用价值研究[J]. 中国骨伤, 2022, 35(8): 757-762.
|
|
[20]
|
郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29(5): 1471-1514.
|
|
[21]
|
Saragaglia, D., Barthomeuf, C. and Banihachemi, J.J. (2021) Deciphering Acute Shoulder Trauma with Normal Initial X-Ray: Contributions of Ultrasonog-raphy and MRI. Orthopaedics & Traumatology: Surgery & Research, 107, Article ID: 102965. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nithiyaraj, E. and Selvaraj, A. (2022) CTSC-Net: An Effectual CT Slice Classification Network to Categorize Organ and Non-Organ Slices from a 3-D CT Image. Neural Computing & Applications, 34, 22141-22156. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
曾维鹏, 林坚平, 周钢, 等. 虚拟现实模拟辅助肩峰成形术的初步结果[J]. 中国矫形外科杂志, 2022, 30(15): 1434-1437.
|
|
[24]
|
Burke, C.J., Walter, W.R., Adler, R.S., et al. (2017) Ultrasound and PET-CT Correlation in Shoulder Pathology: A 5-Year Retrospective Analysis. Clinical Nuclear Medicine, 42, e424-e430. [Google Scholar] [CrossRef]
|
|
[25]
|
Baffour, F.I., Rajendran, K., Glazebrook, K.N., et al. (2022) Ultra-High-Resolution Imaging of the Shoulder and Pelvis Using Photon-Counting-Detector CT: A Feasibility Study in Patients. European Radiology, 32, 7079-7086. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Billaud, A., Lacroix, P.M., Carlier, Y. and Pesquer, L. (2022) How Much Acromial Bone Should Be Removed to Decrease the Critical Shoulder Angle? A 3D CT Acromioplasty Planning Study. Archives of Orthopaedic and Trauma Surgery, 142, 3909-3915. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Baillargeon, A.M., Baffour, F.I., Yu, L., et al. (2020) Fat Quan-tification of the Rotator Cuff Musculature Using Dual-Energy CT—A Pilot Study. European Journal of Radiology, 130, Article ID: 109145. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Taghizadeh, E., Truffer, O., Becce, F., et al. (2021) Deep Learning for the Rapid Automatic Quantification and Characterization of Rotator Cuff Muscle Degeneration from Shoulder CT Datasets. European Radiology, 31, 181-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, X., Agyekum, E.A., Ren, Y., et al. (2021) A Radiomic Nomogram for the Ultrasound-Based Evaluation of Extrathyroidal Extension in Papillary Thyroid Carcinoma. Frontiers in Oncology, 11, Article 625646. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
潘杨阳, 董春雪. MRI双斜冠状位扫描与CT对游泳运动致肩关节撞击综合征的诊断分析[J]. 影像科学与光化学, 2022, 40(5): 1294-1298.
|
|
[31]
|
Matcuk, G.R., Moin, P. and Cen, S. (2020) Shoulder Measurements on MRI: Statistical Analysis of Patients without and with Rotator Cuff Tears and Predic-tive Modeling. Clinical Anatomy, 33, 173-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Morag, Y., Jacobson, J.A., Miller, B., et al. (2006) MR Imaging of Rotator Cuff Injury: What the Clinician Needs to Know. RadioGraphics, 26, 1045-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Davidson, J. and Burkhart, S.S. (2010) The Geometric Classification of Rotator Cuff Tears: A System Linking Tear Pattern to Treatment and Prognosis. Arthroscopy, 26, 417-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yu, X.K., Cao, J.X., Li, L., et al. (2022) The Correla-tion between Types of Posterior Upper Rotator Cuff Tears and Intramuscular Fat Infiltration Based on Magnetic Reso-nance Imaging: A Retrospective Observational Study. Frontiers in Bioengineering and Biotechnology, 10, Article 859174. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Siow, M.Y., Mitchell, B.C., Hachadorian, M., et al. (2021) Asso-ciation between Rotator Cuff Tears and Superior Migration of the Humeral Head: An MRI-Based Anatomic Study. Or-thopaedic Journal of Sports Medicine, 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Koga, A., Itoigawa, Y., Suga, M., et al. (2021) Stiffness Change of the Supraspinatus Muscle Can Be Detected by Magnetic Resonance Elastography. Magnetic Resonance Imaging, 80, 9-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gursan, A., Froeling, M., Hendriks, A.D., et al. (2022) Re-sidual Quadrupolar Couplings Observed in 7 Tesla Deuterium MR Spectra of Skeletal Muscle. Magnetic Resonance in Medicine, 87, 1165-1173. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
van Zijl, P.C.M., Brindle, K., Lu, H., et al. (2021) Hyperpolarized MRI, Functional MRI, MR Spectroscopy and CEST to Provide Metabolic Information in Vivo. Current Opinion in Chemical Biology, 63, 209-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kaniewska, M., Deininger-Czermak, E., Getzmann, J.M., et al. (2022) Application of Deep Learning-Based Image Reconstruction in MR Imaging of the Shoulder Joint to Improve Im-age Quality and Reduce Scan Time. European Radiology, 33, 1513-1525. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lee, W., Rahimi, M., Lee, Y., et al. (2021) POKY: A Software Suite for Multidimensional NMR and 3D Structure Calculation of Biomolecules. Bioinformatics, 37, 3041-3042. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhao, Y. (2022) Deep Learning Solution for Medical Image Localization and Orientation Detection. Medical Image Analysis, 81, Article ID: 102529. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
张善翔, 唐晓渝, 覃欢. 微波热声成像技术的研究进展及展望[J]. 激光与光电子学进展, 2022, 59(6): 67-89.
|
|
[43]
|
Strakowski, J.A. and Visco, C.J. (2019) Diagnostic and Thera-peutic Musculoskeletal Ultrasound Applications of the Shoulder. Muscle & Nerve, 60, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Millstein, E.S. and Snyder, S.J. (2003) Arthroscopic Management of Par-tial, Full-Thickness, and Complex Rotator Cuff Tears: Indications, Techniques, and Complications. Arthroscopy, 19, 189-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Huang, J., Jiang, L., Wang, J., et al. (2022) Ultrasound Shear Wave Elastography-Derived Tissue Stiffness Is Positively Correlated with Rotator Cuff Tear Size and Muscular Degen-eration. Knee Surgery, Sports Traumatology, Arthroscopy, 30, 2492-2499. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hinsley, H., Ganderton, C., Arden, N.K. and Carr, A.J. (2022) Prevalence of Rotator Cuff Tendon Tears and Symptoms in a Chingford General Population Cohort, and the Resultant Impact on UK Health Services: A Cross-Sectional Observational Study. BMJ Open, 12, e059175. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zoga, A.C., Kamel, S.I., Hynes, J.P., et al. (2021) The Evolv-ing Roles of MRI and Ultrasound in First-Line Imaging of Rotator Cuff Injuries. American Journal of Roentgenology, 217, 1390-1400. [Google Scholar] [CrossRef]
|
|
[48]
|
Lin, C.Y., Chou, C.C., Chen, L.R., et al. (2022) Quantitative Analysis of Dynamic Subacromial Ultrasonography: Reliability and Influencing Factors. Frontiers in Bioen-gineering and Biotechnology, 10, Article 830508. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Park, J., Chai, J.W., Kim, D.H., et al. (2018) Dynamic Ultraso-nography of the Shoulder. Ultrasonography, 37, 190-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bureau, N.J., Beauchamp, M., Cardinal, E., et al. (2006) Dynamic Sonography Evaluation of Shoulder Impingement Syndrome. American Journal of Roentgenology, 187, 216-220. [Google Scholar] [CrossRef]
|
|
[51]
|
Xu, P. (2023) Ef-fects of Ultrasound-Guided Platelet-Rich Plasma Combined with Sodium Hyaluronate on Shoulder Function Recovery, Pain Degree and Mental Health of Patients with Rotator Cuff Injury. Biotechnology & Genetic Engineering Reviews. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhang, X., Chen, D., Babich, J.W., et al. (2021) In Vivo Im-aging of Fibroblast Activity Using a 68Ga-Labeled Fibroblast Activation Protein Alpha (FAP-α) Inhibitor: Study in a Mouse Rotator Cuff Repair Model. Journal of Bone and Joint Surgery, 103, e40. [Google Scholar] [CrossRef]
|
|
[53]
|
Shinagawa, K., Hatta, T., Watanuki, S., et al. (2023) The Quantifica-tion of Muscle Activities during Arm Elevation following Reverse Shoulder Arthroplasty or Superior Capsular Recon-struction for Irreparable Rotator Cuff Tears Using Positron Emission Tomography. Journal of Shoulder and Elbow Sur-gery, 32, 392-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hara, K., Hellem, E., Yamada, S., et al. (2022) Efficacy of Treating Segmental Bone Defects through Endochondral Ossification: 3D Printed Designs and Bone Metabolic Activities. Materi-als Today Bio, 14, Article ID: 100237. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Koike, Y., Sano, H., Kita, A., et al. (2013) Symptomatic Rotator Cuff Tears Show Higher Radioisotope Uptake on Bone Scintigraphy Compared with Asymptomatic Tears. The Ameri-can Journal of Sports Medicine, 41, 2028-2033. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Koike, Y., Sano, H., Kinjyo, T., et al. (2011) Shoulder Surface Temperature and Bone Scintigraphy Findings in Patients with Rotator Cuff Tears. Upsala Journal of Medical Sciences, 116, 142-147. [Google Scholar] [CrossRef] [PubMed]
|