|
[1]
|
Delaney, G., Jacob, S., Featherstone, C., et al. (2005) The Role of Radiotherapy in Cancer Treatment. Cancer, 104, 1129-1137. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gami, B., Harrington, K., Blake, P., et al. (2003) How Patients Manage Gastrointestinal Symptoms after Pelvic Radiotherapy. Alimentary Pharmacology & Therapeutics, 18, 987-994. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kuku, S., Fragkos, C., Mccormack, M., et al. (2013) Radi-ation-Induced Bowel Injury: The Impact of Radiotherapy on Survivorship after Treatment for Gynaecological Cancers. British Journal of Cancer, 109, 1504-1512. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Andreyev, J. (2007) Gastrointestinal Symptoms after Pelvic Radiothera-py: A New Understanding to Improve Management of Symptomatic Patients. The Lancet Oncology, 8, 1007-1017. [Google Scholar] [CrossRef]
|
|
[5]
|
Barraclough, L.H., Routledge, J.A., Farnell, D.J., et al. (2012) Prospective Analysis of Patient-Reported Late Toxicity Following Pelvic Radiotherapy for Gynaecological Cancer. Radi-otherapy and Oncology, 103, 327-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
中华医学会外科学分会结直肠外科学组, 中国医师协会外科医师分会结直肠外科医师委员会, 中国抗癌协会大肠癌专业委员会. 中国放射性直肠损伤多学科诊治专家共识(2021版) [J]. 中华胃肠外科杂志, 2021, 24(11): 937-949.
|
|
[7]
|
Kwak, S.Y., Park, S., Kim, H., et al. (2021) Atorvas-tatin Inhibits Endothelial PAI-1-Mediated Monocyte Migration and Alleviates Radiation-Induced Enteropathy. Interna-tional Journal of Molecular Sciences, 22, Article No. 1828. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moraitis, I., Guiu, J. and Rubert, J. (2023) Gut Microbiota Controlling Radiation-Induced Enteritis and Intestinal Regeneration. Trends in Endocrinology & Metabolism, 34, 489-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cui, Y., Wu, H., Liu, Z., et al. (2023) CXCL16 Inhibits Epithelial Regeneration and Promotes Fibrosis during the Progression of Radiation Enteritis. The Journal of Pathology, 259, 180-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kwak, S.Y., Jang, W.I., Lee, S.B., et al. (2022) Centella asiati-ca-Derived Endothelial Paracrine Restores Epithelial Barrier Dysfunction in Radiation-Induced Enteritis. Cells, 11, Article No. 2544. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yang, L., Fang, C., Song, C., et al. (2023) Mesenchymal Stem Cell-Derived Exosomes Are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5(+) Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Engineering and Re-generative Medicine, 20, 739-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Turnbaugh, P.J., Quince, C., Faith, J.J., et al. (2010) Organismal, Genetic, and Transcriptional Variation in the Deeply Sequenced Gut Microbiomes of Identical Twins. Proceedings of the National Academy of Sciences of the United States of America, 107, 7503-7508. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tap, J., Mondot, S., Levenez, F., et al. (2009) Towards the Human Intestinal Microbiota Phylogenetic Core. Environmental Microbiology, 11, 2574-2584. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Alm, E.J., Friedman, J. and Smillie, C.S. (2013) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kho, Z.Y. and Lal, S.K. (2018) The Human Gut Microbiome—A Poten-tial Controller of Wellness and Disease. Frontiers in Microbiology, 9, Article No. 1835. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tang, W.H., Kitai, T. and Hazen, S.L. (2017) Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 120, 1183-1196. [Google Scholar] [CrossRef]
|
|
[18]
|
Crawford, P.A. and Gordon, J.I. (2005) Microbial Reg-ulation of Intestinal Radiosensitivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 13254-13259. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, Z., Wang, Q., Wang, X., et al. (2019) Gut microbial Dysbiosis Is Associated with Development and Progression of Radiation Enteritis during Pelvic Radio-therapy. Journal of Cellular and Molecular Medicine, 23, 3747-3756. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nam, Y.D., Kim, H.J., Seo, J.G., et al. (2013) Impact of Pelvic Radio-therapy on Gut Microbiota of Gynecological Cancer Patients Revealed by Massive Pyrosequencing. PLOS ONE, 8, e82659. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, L., Chen, C., Liu, X., et al. (2021) Altered Gut Microbiota Associated with Hemorrhage in Chronic Radiation Proctitis. Frontiers in Oncology, 11, Article ID: 637265. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, Q., Qin, B., Hou, W., et al. (2023) Pathogenesis and Therapy of Radiation Enteritis with Gut Microbiota. Frontiers in Pharmacology, 14, Article ID: 1116558. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Manichanh, C., Borruel, N., Casellas, F., et al. (2012) The Gut Microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 9, 599-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, Z., Cheng, W., Qu, W., et al. (2020) Antibiotic Alleviates Radiation-Induced Intestinal Injury by Remodeling Microbiota, Reducing Inflammation, and Inhibiting Fibrosis. ACS Omega, 5, 2967-2977. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
The Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Derrien, M., Belzer, C. and de Vos, W.M. (2017) Akkermansia mucini-phila and Its Role in Regulating Host Functions. Microbial Pathogenesis, 106, 171-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Garcia-Peris, P., Velasco, C., Hernandez, M., et al. (2016) Ef-fect of Inulin and Fructo-Oligosaccharide on the Prevention of Acute Radiation Enteritis in Patients with Gynecological Cancer and Impact on Quality-of-Life: A Randomized, Double-Blind, Placebo-Controlled Trial. European Journal of Clinical Nutrition, 70, 170-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
García-Peris, P., Velasco, C., Lozano, M.A., et al. (2012) Effect of a Mixture of Inulin and Fructo-Oligosaccharide on Lactobacillus and Bifidobacterium Intestinal Microbiota of Patients Re-ceiving Radiotherapy: A Randomised, Double-Blind, Placebo-Controlled Trial. Nutricion Hospitalaria, 27, 1908-1915.
|
|
[29]
|
Li, Y., Dong, J., Xiao, H., et al. (2021) Caloric Restriction Alleviates Radiation Injuries in a Sex-Dependent Fashion. FASEB Journal, 35, e21787. [Google Scholar] [CrossRef]
|
|
[30]
|
Lee, S.U., Jang, B.S., Na, Y.R., et al. (2023) Effect of Lactobacillus rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics and Antimicrobial Proteins. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sahakitrungruang, C., Patiwongpaisarn, A., Kanjanasilp, P., et al. (2012) A Randomized Controlled Trial Comparing Colonic Irrigation and Oral Antibiotics Administration versus 4% Formalin Application for Treatment of Hemorrhagic Radiation Proctitis. Diseases of the Colon & Rectum, 55, 1053-1058. [Google Scholar] [CrossRef]
|
|
[32]
|
He, B., Liu, Y., Hoang, T.K., et al. (2019) Antibi-otic-Modulated Microbiome Suppresses Lethal Inflammation and Prolongs Lifespan in Treg-Deficient Mice. Microbiome, 7, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Guo, H., Chou, W.C., Lai, Y., et al. (2020) Multi-Omics Analyses of Radiation Survivors Identify Radioprotective Microbes and Metabolites. Science, 370, eaay9097. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, T., Su, D., Lei, C., et al. (2023) Treatment of Radiation Enteritis with Fecal Transplantation. The American Surgeon, 89, 2999-3001. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ding, X., Li, Q., Li, P., et al. (2020) Fecal Microbiota Trans-plantation: A Promising Treatment for Radiation Enteritis? Radiotherapy and Oncology, 143, 12-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zheng, Y.M., He, X.X., Xia, H.X., et al. (2020) Multi-Donor Multi-Course Faecal Microbiota Transplantation Relieves the Symptoms of Chronic Hemorrhagic Radiation Proctitis: A Case Report. Medicine, 99, e22298. [Google Scholar] [CrossRef]
|
|
[37]
|
Tierney, B., Yang, Z., Luber, J., et al. (2019) The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host & Microbe, 26, 283-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hooper, L.V. and Gordon, J.I. (2001) Commensal Host-Bacterial Relationships in the Gut. Science, 292, 1115-1118. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jeremy, K., et al. (2012) Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zheng, X., Xie, G., Zhao, A., et al. (2011) The Footprints of Gut Microbial-Mammalian Co-Metabolism. Journal of Proteome Research, 10, 5512-5522. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yang, W. and Cong, Y. (2021) Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cellular & Molecular Immunology, 18, 866-877. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., et al. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, Y., Dong, J., Xiao, H., et al. (2020) Gut Commensal De-rived-Valeric Acid Protects against Radiation Injuries. Gut Microbes, 11, 789-806. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, Y., Xiao, H., Dong, J., et al. (2020) Gut Microbiota Me-tabolite Fights against Dietary Polysorbate 80-Aggravated Radiation Enteritis. Frontiers in Microbiology, 11, Article No. 1450. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Agus, A., Richard, D., Faïs, T., et al. (2021) Propionate Ca-tabolism by CD-Associated Adherent-Invasive E. coli Counteracts Its Anti-Inflammatory Effect. Gut Microbes, 13, Arti-cle ID: 1839318. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tong, L.C., Wang, Y., Wang, Z.B., et al. (2016) Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflamma-tion and Oxidative Stress. Frontiers in Pharmacology, 7, Article No. 253. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, G., Lin, J., Zhang, C., et al. (2021) Microbiota Metabolite Butyr-ate Constrains Neutrophil Functions and Ameliorates Mucosal Inflammation in Inflammatory Bowel Disease. Gut Mi-crobes, 13, Article ID: 1968257. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Korsten, S., Peracic, L., van Groeningen, L., et al. (2022) Butyrate Prevents Induction of CXCL10 and Non-Canonical IRF9 Expression by Activated Human Intestinal Epithelial Cells via HDAC Inhibition. International Journal of Molecular Sciences, 23, Article No. 3980. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yuille, S., Reichardt, N., Panda, S., et al. (2018) Human Gut Bacteria as Potent Class I Histone Deacetylase Inhibitors in Vitro through Production of Butyric Acid and Valeric Acid. PLOS ONE, 13, e201073. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
de Aguiar, V.T., Tarling, E.J. and Edwards, P.A. (2013) Plei-otropic Roles of Bile Acids in Metabolism. Cell Metabolism, 17, 657-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Collins, S.L., Stine, J.G., Bisanz, J.E., et al. (2023) Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nature Reviews Microbiology, 21, 236-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Sorrentino, G., Perino, A., Yildiz, E., et al. (2020) Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology, 159, 956-968. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Jian, Y.P., Yang, G., Zhang, L.H., et al. (2022) Lactobacillus plantarum Alleviates Irradiation-Induced Intestinal Injury by Activation of FXR-FGF15 Signaling in Intestinal Epithelia. Journal of Cellular Physiology, 237, 1845-1856. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Yang, J.Y., Liu, M.J., Lv, L., et al. (2022) Metformin Alleviates Irradia-tion-Induced Intestinal Injury by Activation of FXR in Intestinal Epithelia. Frontiers in Microbiology, 13, Article ID: 932294. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Li, W., Lin, Y., Luo, Y., et al. (2021) Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients, 13, Article No. 2910. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Lin, Y., Xia, P., Cao, F., et al. (2023) Protective Effects of Activated Vitamin D Receptor on Radiation-Induced Intestinal Injury. Journal of Cellular and Molecular Medicine, 27, 246-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Xiao, H.W., Cui, M., Li, Y., et al. (2020) Gut Microbiota-Derived Indole 3-Propionic Acid Protects against Radiation Toxicity via Retaining acyl-CoA-Binding Protein. Microbiome, 8, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Thotala, D., Chetyrkin, S., Hudson, B., et al. (2009) Pyridoxa-mine Protects Intestinal Epithelium from Ionizing Radiation-Induced Apoptosis. Free Radical Biology and Medicine, 47, 779-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Kaur, H., Ali, S.A., Short, S.P., et al. (2023) Identifica-tion of a Functional Peptide of a Probiotic Bacterium-Derived Protein for the Sustained Effect on Preventing Colitis. Gut Microbes, 15, Article ID: 2264456. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wang, S., Xiang, L., Li, F., et al. (2023) Butyrate Protects against Clostridium difficile Infection by Regulating Bile Acid Metabolism. Microbiology Spectrum, 11, e447922. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Suez, J., Zmora, N., Segal, E., et al. (2019) The Pros, Cons, and Many Unknowns of Probiotics. Nature Medicine, 25, 716-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Xie, A., Ji, H., Liu, Z., et al. (2023) Modified Prebiotic-Based “Shield” Armed Probiotics with Enhanced Resistance of Gastrointestinal Stresses and Prolonged Intestinal Retention for Synergistic Alleviation of Colitis. ACS Nano, 17, 14775-14791. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Liu, D., Wei, M., Yan, W., et al. (2023) Potential Applications of Drug Delivery Technologies against Radiation Enteritis. Expert Opinion on Drug Delivery, 20, 435-455. [Google Scholar] [CrossRef] [PubMed]
|