受迫摆方程周期解的存在性
Existence of Periodic Solutionsfor the Fourth-Order ForcedPendulum Equation
摘要: 本文运用 Mawhin 延拓定理确保以下具有周期边界条件的四阶受迫摆方程x(4)+kx"+a(t)sin x=e(t)至少具有一个非平凡正解, 其中 k 是负常数,a(t) 是一个连续的 T −周期函数且在 [0, T ] 上不变号, e(t) 是一个连续的 T −周期函数且 e(t) 不恒为 0。 作为应用,我们给出一些例子来说明这些定理的适用性。
Abstract: In this paper, we apply the Mawhin's continuation theorem to ensure that a fourth- order forced pendulum equation of the form x(4)+kx"+a(t)sin x=e(t) with periodic boundary conditions possesses at least one nontrivial positive solution, where k is a constant, a(t) is a continuous Tperiodic function and does not change the sign on [0; T], e(t) is a continuous Tperiodic function and e(t) is not equal to 0. As applications, we will give some examples to illustrate the application of these theorems.
文章引用:于文源. 受迫摆方程周期解的存在性[J]. 理论数学, 2024, 14(1): 261-271. https://doi.org/10.12677/PM.2024.141028

参考文献

[1] Hamel, G. (1922) Ueber erzwungene Schingungen bei endlischen Amplituden. Mathematische Annalen, 86, 1-13.
https://doi.org/10.1007/BF01458566
[2] Mawhin, J. and Willem, M. (1984) Multiple Solutions of the Periodic Boundary Value Problem for Some Forced Pendulum-Type Equations. Journal of Differential Equations, 52, 264-287.
https://doi.org/10.1016/0022-0396(84)90180-3
[3] Fournier, G. and Mawhin, J. (1985) On Periodic Solutions of Forced Pendulum-Like Equations. Journal of Differential Equations, 60, 381-395.
https://doi.org/10.1016/0022-0396(85)90131-7
[4] Mawhin, J. (1987) Recent Results on Periodic Solutions of the Forced Pendulum Equation. Rendiconti dell'Istituto di Matematica dell'UniversitUdi Trieste, 19, 119-129.
[5] Belley, J.-M., Fournier, G. and Saadi Drissi, K. (1992) Almost Periodic Weak Solutions to Forced Pendulum Type Equations without Friction. Aequationes Mathematicae, 44, 100-108.
https://doi.org/10.1007/BF01834208
[6] Andres, J. (1995) Large-Period Forced Oscillations to Higher-Order Pendulum-Type Equa- tions. Differential Equations and Dynamical Systems, 3, 407-421.
[7] Ortega, R. (1997) A Forced Pendulum Equation with Many Periodic Solutions. Rocky Moun- tain Journal of Mathematics, 27, 861-876.
https://doi.org/10.1216/rmjm/1181071898
[8] Ortega, R. (2000) Counting Periodic Solutions of the Forced Pendulum Equation. Nonlinear Analysis, 42, 1055-1062.
https://doi.org/10.1016/S0362-546X(99)00169-8
[9] Shi, B. (2001) The Solutions of Forced Pendulums Equation with Small Damping. Annals of Differential Equations, 17, 343-351.
[10] Amster, P. and Mariani, M.C. (2003) Periodic Solutions of the Forced Pendulum Equation with Friction. AcadWmie Royale de Belgique. Bulletin de la Classe des Sciences. 6e SWrie, 14, 311-320.
https://doi.org/10.3406/barb.2003.28380
[11] Yu, J. (2009) The Minimal Period Problem for the Classical Forced Pendulum Equation. Journal of Differential Equations, 247, 672-684.
https://doi.org/10.1016/j.jde.2009.03.031
[12] Meghea, I. and Stanciu, V. (2009) Existence of the Solutions of Forced Pendulum Equation by Variational Methods. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 71, 115-124.
[13] Ortega, R. (2013) Prevalence of Non-Degenerate Periodic Solutions in the Forced Pendulum Equation. Advanced Nonlinear Studies, 13, 219-229.
https://doi.org/10.1515/ans-2013-0113
[14] Ortega, R. (2013) Stable Periodic Solutions in the Forced Pendulum Equation. Regular and Chaotic Dynamics, 18, 585-599.
https://doi.org/10.1134/S1560354713060026
[15] Ortega, R. (2014) A Forced Pendulum Equation without Stable Periodic Solutions of a Fixed Period. Portugaliae Mathematica, 71, 193-216.
https://doi.org/10.4171/PM/1950
[16] Lui, W. and Yang, N. (2008) Adaptive Finite Element Method for Optimal Control Governed by PDEs. Science Press, Beijing.
[17] Hakl, R., Torres, P.J. and Zamora M. (2012) Periodic Solutions of Singular Second Order Differential Equations: The Repulsive Case. Topological Methods in Nonlinear Analysis, 39, 199-220.
[18] Zhao, C., Chen, W. and Zhou, J. (2010) Periodic Solutions for a Class of Fourth-Order Non- linear Differential Equations. Nonlinear Analysis, 72, 1221-1226.
https://doi.org/10.1016/j.na.2009.08.006