[1]
|
Hamel, G. (1922) Ueber erzwungene Schingungen bei endlischen Amplituden. Mathematische
Annalen, 86, 1-13. https://doi.org/10.1007/BF01458566
|
[2]
|
Mawhin, J. and Willem, M. (1984) Multiple Solutions of the Periodic Boundary Value Problem
for Some Forced Pendulum-Type Equations. Journal of Differential Equations, 52, 264-287.
https://doi.org/10.1016/0022-0396(84)90180-3
|
[3]
|
Fournier, G. and Mawhin, J. (1985) On Periodic Solutions of Forced Pendulum-Like Equations.
Journal of Differential Equations, 60, 381-395. https://doi.org/10.1016/0022-0396(85)90131-7
|
[4]
|
Mawhin, J. (1987) Recent Results on Periodic Solutions of the Forced Pendulum Equation.
Rendiconti dell'Istituto di Matematica dell'UniversitUdi Trieste, 19, 119-129.
|
[5]
|
Belley, J.-M., Fournier, G. and Saadi Drissi, K. (1992) Almost Periodic Weak Solutions to
Forced Pendulum Type Equations without Friction. Aequationes Mathematicae, 44, 100-108.
https://doi.org/10.1007/BF01834208
|
[6]
|
Andres, J. (1995) Large-Period Forced Oscillations to Higher-Order Pendulum-Type Equa-
tions. Differential Equations and Dynamical Systems, 3, 407-421.
|
[7]
|
Ortega, R. (1997) A Forced Pendulum Equation with Many Periodic Solutions. Rocky Moun-
tain Journal of Mathematics, 27, 861-876. https://doi.org/10.1216/rmjm/1181071898
|
[8]
|
Ortega, R. (2000) Counting Periodic Solutions of the Forced Pendulum Equation. Nonlinear
Analysis, 42, 1055-1062. https://doi.org/10.1016/S0362-546X(99)00169-8
|
[9]
|
Shi, B. (2001) The Solutions of Forced Pendulums Equation with Small Damping. Annals of
Differential Equations, 17, 343-351.
|
[10]
|
Amster, P. and Mariani, M.C. (2003) Periodic Solutions of the Forced Pendulum Equation
with Friction. AcadWmie Royale de Belgique. Bulletin de la Classe des Sciences. 6e SWrie,
14, 311-320. https://doi.org/10.3406/barb.2003.28380
|
[11]
|
Yu, J. (2009) The Minimal Period Problem for the Classical Forced Pendulum Equation.
Journal of Differential Equations, 247, 672-684. https://doi.org/10.1016/j.jde.2009.03.031
|
[12]
|
Meghea, I. and Stanciu, V. (2009) Existence of the Solutions of Forced Pendulum Equation
by Variational Methods. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics,
71, 115-124.
|
[13]
|
Ortega, R. (2013) Prevalence of Non-Degenerate Periodic Solutions in the Forced Pendulum
Equation. Advanced Nonlinear Studies, 13, 219-229. https://doi.org/10.1515/ans-2013-0113
|
[14]
|
Ortega, R. (2013) Stable Periodic Solutions in the Forced Pendulum Equation. Regular and
Chaotic Dynamics, 18, 585-599. https://doi.org/10.1134/S1560354713060026
|
[15]
|
Ortega, R. (2014) A Forced Pendulum Equation without Stable Periodic Solutions of a Fixed
Period. Portugaliae Mathematica, 71, 193-216. https://doi.org/10.4171/PM/1950
|
[16]
|
Lui, W. and Yang, N. (2008) Adaptive Finite Element Method for Optimal Control Governed
by PDEs. Science Press, Beijing.
|
[17]
|
Hakl, R., Torres, P.J. and Zamora M. (2012) Periodic Solutions of Singular Second Order
Differential Equations: The Repulsive Case. Topological Methods in Nonlinear Analysis, 39,
199-220.
|
[18]
|
Zhao, C., Chen, W. and Zhou, J. (2010) Periodic Solutions for a Class of Fourth-Order Non-
linear Differential Equations. Nonlinear Analysis, 72, 1221-1226.
https://doi.org/10.1016/j.na.2009.08.006
|