|
[1]
|
Mak, L.Y., et al. (2021) HBV RNA Profiles in Patients with Chronic Hepatitis B under Different Disease Phases and Anti-viral Therapy. Hepatology, 73, 2167-2179. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Petri, M., et al. (2021) Compar-ison of the 2019 European Alliance of Associations for Rheumatology/American College of Rheumatology Systemic Lupus Erythematosus Classification Criteria with Two Sets of Earlier Systemic Lupus Erythematosus Classification Cri-teria. Arthritis Care & Research, 73, 1231-1235. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Smith, M.H. and Berman, J.R. (2022) What Is Rheumatoid Arthritis? JAMA, 327, 1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gravallese, E.M. and Firestein, G.S. (2023) Rheumatoid Arthri-tis—Common Origins, Divergent Mechanisms. The New England Journal of Medicine, 388, 529-542. [Google Scholar] [CrossRef]
|
|
[5]
|
Trépo, C., Chan, H.L. and Lok, A. (2014) Hepatitis B Virus Infec-tion. Lancet, 384, 2053-2063. [Google Scholar] [CrossRef]
|
|
[6]
|
Saito, M., et al. (2021) Tctex-1 Augments G Pro-tein-Coupled Receptor-Mediated G(s) Signaling by Activating Adenylyl Cyclase. Journal of Pharmacological Sciences, 145, 150-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Miao, S., et al. (2023) Identification of DYNLT1 Associated with Proliferation, Relapse, and Metastasis in Breast Cancer. Frontiers in Medicine, 10, Article 1167676. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, D.Y., et al. (2022) Sperm flagellar 2 (SPEF2) Is Essential for Sperm Flagellar Assembly in Humans. Asian Journal of Andrology, 24, 359-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huang, L., Wei, B., Zhao, Y., Gong, X. and Chen, L. (2023) DYNLT1 Promotes Mitochondrial Metabolism to Fuel Breast Cancer Development by Inhibiting Ubiquitination Degradation of VDAC1. Molecular Medicine, 29, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Williamson, S.R., et al. (2020) Report from the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: III: Molecular Pathology of Kidney Cancer. The American Journal of Sur-gical Pathology, 44, e47-e65. [Google Scholar] [CrossRef]
|
|
[11]
|
Goodarzi, H., et al. (2016) Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression. Cell, 165, 1416-1427. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bai, M., Che, Y., Lu, K. and Fu, L. (2020) Analysis of Deubiquiti-nase OTUD5 as a Biomarker and Therapeutic Target for Cervical Cancer by Bioinformatic Analysis. PeerJ, 8, e9146. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Adler, D., et al. (2014) MED15, Encoding a Subunit of the Mediator Com-plex, Is Overexpressed at High Frequency in Castration-Resistant Prostate Cancer. International Journal of Cancer, 135, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, M., Yang, L., Chen, D. and Heisterkamp, N. (2023) Drug-Tolerant Persister B-Cell Precursor Acute Lymphoblastic Leukemia Cells. bioRxiv. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rampello, A.J., et al. (2020) Torsin ATPase Deficiency Leads to Defects in Nuclear Pore Biogenesis and Sequestration of MLF2. Journal of Cell Biology, 219, e201910185. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Prophet, S.M., et al. (2022) Atypical Nuclear Envelope Condensates Linked to Neurological Disorders Reveal Nucleoporin-Directed Chaperone Activities. Nature Cell Biology, 24, 1630-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Banerjee, M., Datta, M. and Bhattacharyya, N.P. (2017) Modu-lation of Mutant Huntingtin Aggregates and Toxicity by Human Myeloid Leukemia Factors. The International Journal of Biochemistry & Cell Biology, 82, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yan, J., et al. (2020) Black Carp TRAFD1 Restrains MAVS-Mediated Antiviral Signaling during the Innate Immune Activation. Fish & Shellfish Immunology, 103, 66-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Witwicka, H., et al. (2015) TRAFD1 (FLN29) Interacts with Plekhm1 and Regulates Osteoclast Acidification and Resorption. PLOS ONE, 10, e0127537. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yang, J., et al. (2020) The Role of Phosphorylation of MLF2 at Serine 24 in BCR-ABL Leukemogenesis. Cancer Gene Therapy, 27, 98-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Fang, D., et al. (2023) MLF2 Negatively Regulates P53 and Promotes Colorectal Carcinogenesis. Advanced Science, 10, e2303336. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Dave, B., et al. (2014) Targeting RPL39 and MLF2 Reduces Tumor Initiation and Metastasis in Breast Cancer by Inhibiting Nitric Oxide Synthase Signaling. Proceedings of the National Academy of Sciences of the United States of America, 111, 8838-8843. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Huang, J.B., Chen, Z.R., Yang, S.L. and Hong, F.F. (2023) Nitric Oxide Synthases in Rheumatoid Arthritis. Molecules, 28, Article 4414. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Guidotti, L.G., McClary, H., Loudis, J.M. and Chisari, F.V. (2000) Nitric Oxide Inhibits Hepatitis B Virus Replication in the Livers of Transgenic Mice. Journal of Experimental Medicine, 191, 1247-1252. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hsu, J.L., et al. (2013) Zinc-Dependent Interaction between JAB1 and Pre-S2 Mutant Large Surface Antigen of Hepatitis B Virus and Its Implications for Viral Hepatocarcinogenesis. Journal of Virology, 87, 12675-12684. [Google Scholar] [CrossRef]
|
|
[26]
|
Nováková, J., Talacko, P., Novák, P. and Vališ, K. (2019) The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells. Cells, 8, Article 191. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Oh, Y.T. and Sun, S.Y. (2021) Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules, 11, Article 499. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gao, H., et al. (2023) Targeting Ubiquitin Specific Proteases (USPs) in Cancer Immunotherapy: From Basic Research to Pre-clinical Application. Journal of Experimental & Clinical Cancer Research, 42, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nanda, S.K., et al. (2011) Polyubiquitin Binding to ABIN1 Is Required to Prevent Autoimmunity. The Journal of Experimental Medicine, 208, 1215-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Luo, X.B., et al. (2020) Proinflammatory Effects of Ubiquitin-Specific Protease 5 (USP5) in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Mediators of Inflammation, 2020, Article ID: 8295149. [Google Scholar] [CrossRef] [PubMed]
|