|
[1]
|
Ruscica, M., Baragetti, A., Catapano, A.L., et al. (2017) Translating the Biology of Adipokines in Atherosclerosis and Cardiovascular Diseases: Gaps and Open Questions. Nutrition, Metabolism and Cardiovascular Diseases, 27, 379-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Goeller, M., Achenbach, S., Marwan, M., et al. (2018) Epicardial Adipose Tissue Density and Volume Are Related to Subclinical Atherosclerosis, Inflammation and Major Adverse Cardiac Vents in a Symptomatic Subject. JCardiovascComputTomogr, 12, 67-73.
|
|
[3]
|
Iacobellis, G. (2022) Epicardial Adipose Tissue in Contemporary Cardiology. Nature Reviews Cardiology, 19, 593-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
周茜洋, 唐春香, 杨桂芬, 等. 心包脂肪影像学的研究进展[J]. 国际医学放射学杂志, 2020, 43(4): 447-451.
|
|
[5]
|
Chatterjee, T.K., Aronow, B.J., Tong, W.S., et al. (2013) Human Coronary Artery Perivascular Adipocytes Overexpress Genes Responsible for Regulating Vascular Morphology, Inflammation, and Hemostasis. Physiological Genomics, 45, 697-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
周茜洋, 唐春香, 张龙江, 等. 冠状动脉周围脂肪影像学的研究进展[J]. 中华放射学杂志, 2021, 55(3): 320-323.
|
|
[7]
|
Nakanishi, K., Fukuda, S., Tanaka, A., et al. (2013) Augmented Inflammation in Pericoronary Adipose Tissue Is Associated with Future Acute Coronary Syndrome in Patients with Coronary Artery Disease. European Heart Journal, 34. [Google Scholar] [CrossRef]
|
|
[8]
|
Muhlestein, J.B., Lappe, D.L., Lima, J.A., Rosen, B.D., May, H.T., Knight, S., Bluemke, D.A., Towner, S.R., Le, V., Bair, T.L., Vavere, A.L. and Anderson, J.L. (2014) Effect of Screening for Coronary Artery Disease Using CT Angiography on Mortality and Cardiac Events in High-Risk Patients with Diabetes: The FACTOR-64 Randomized Clinical Trial. JAMA, 312, 2234-2243. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Williams, M.C., Kwiecinski, J., Doris, M., McElhinney, P., D’Souza, M.S., Cadet, S., Adamson, P.D., Moss, A.J., Alam, S., Hunter, A., Shah, A.S.V., Mills, N.L., Pawade, T., Wang, C., Weir McCall, J., Bonnici-Mallia, M., Murrills, C., Roditi, G., van Beek, E.J.R., Shaw, L.J., Nicol, E.D., Berman, D.S., Slomka, P.J., Newby, D.E., Dweck, M.R. and Dey, D. (2020) Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results from the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the Heart). Circulation, 141, 1452-1462. [Google Scholar] [CrossRef]
|
|
[10]
|
Oikonomou, E.K., Williams, M.C., Kotanidis, C.P., Desai, M.Y., Marwan, M., Antonopoulos, A.S., Thomas, K.E., Thomas, S., Akoumianakis, I., Fan, L.M., Kesavan, S., Herdman, L., Alashi, A., Centeno, E.H., Lyasheva, M., Griffin, B.P., Flamm, S.D., Shirodaria, C., Sabharwal, N., Kelion, A., Dweck, M.R., Van Beek, E.J.R., Deanfield, J., Hopewell, J.C., Neubauer, S., Channon, K.M., Achenbach, S., Newby, D.E. and Antoniades, C. (2019) A Novel Machine Learning-Derived Radiotranscriptomic Signature of Perivascular Fat Improves Cardiac Risk Prediction Using Coronary CT Angiography. European Heart Journal, 40, 3529-3543. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Oikonomou, E.K., Marwan, M., Desai, M.Y., Mancio, J., Alashi, A., Hutt Centeno, E., Thomas, S., Herdman, L., Kotanidis, C.P., Thomas, K.E., Griffin, B.P., Flamm, S.D., Antonopoulos, A.S., Shirodaria, C., Sabharwal, N., Deanfield, J., Neubauer, S., Hopewell, J.C., Channon, K.M., Achenbach, S. and Antoniades, C. (2018) Non-Invasive Detection of Coronary Inflammation Using Computed Tomography and Prediction of Residual Cardiovascular Risk (the CRISP CT Study): A Post-Hoc Analysis of Prospective Outcome Data. The Lancet, 392, 929-939. [Google Scholar] [CrossRef]
|
|
[12]
|
Goeller, M., Achenbach, S., Cadet, S., Kwan, A.C., Commandeur, F., Slomka, P.J., Gransar, H., Albrecht, M.H., Tamarappoo, B.K., Berman, D.S., Marwan, M. and Dey, D. (2018) Pericoronary Adipose Tissue Computed Tomography Attenuation and High-Risk Plaque Characteristics in Acute Coronary Syndrome Compared with Stable Coronary Artery Disease. JAMA, 3, 858-863. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Auer, J., Leitner, A., Berent, R., Lamm, G., et al. (2010) Long-Term Outcomes Following Coronary Drug-Eluting- and Bare-Metal-Stent Implantation. Atherosclerosis, 210, 503-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Finn, A.V., Nakazawa, G., Joner, M., et al. (2007) Vascular Responses to Drug Eluting Stents: Importance of Delayed Healing. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1500-1510. [Google Scholar] [CrossRef]
|
|
[15]
|
Kang, S.J., Mintz, G.S., Park, D.W., et al. (2011) Mecha-nisms of In-Stent Rest-Enosis after Drug-Eluting Stent Implantation Intravascular Ultrasound Analysis. Circulation: Cardiovascular Interventions, 4, 9-14. [Google Scholar] [CrossRef]
|
|
[16]
|
Fuster, J.J., Ouchi, N., Gokce, N. and Walsh, K. (2016) Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circulation Research, 118, 1786-1807. [Google Scholar] [CrossRef]
|
|
[17]
|
Akoumianakis, I. and Antoniades, C. (2017) The Inter-play between Adipose Tissue and the Cardiovascular System: Is Fat Always Bad? Cardiovascular Research, 113, 999-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Antonopoulos, A.S., Margaritis, M., Verheule, S., et al. (2016) Mutual Regulation of Epicardial Adipose Tissue and Myocardial Redox State by PPAR-Gamma/Adiponectin Signalling. Circulation Research, 118, 842-855. [Google Scholar] [CrossRef]
|
|
[19]
|
Garg, R., Tellez, A., Alviar, C., et al. (2008) The Effect of Percutaneous Coronary Intervention on Inflammatory Response and Endothelial Progenitor Cell Recruitment. Cath-eterization and Cardiovascular Interventions, 72, 205-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mokhtari, N., Zschernitz, S., Sebens, S., et al. (2010) Cardiac Release and Kinetics of Cytokines after Elective Bare Metal Coronary Stenting. Journal of Thrombosis and Thrombolysis, 30, 391-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Antonopoulos, A.S., Sanna, F., Sabharwal, N., et al. (2017) De-tecting Human Coronary Inflammation by Imaging Perivascular Fat. Science Translational Medicine, 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nomura, C.H., Assuncao Jr., A.N., Guimarães, P.O., et al. (2020) Association between Perivascular Inflammation and Downstream Myocardial Perfusion in Patients with Suspected Coronary Artery Disease. European Heart Journal - Cardiovascular Imaging, 21, 599-605. [Google Scholar] [CrossRef] [PubMed]
|