|
[1]
|
Roberts, S.E., Akbari, A., Thorne, K., et al. (2013) The Incidence of Acute Pancreatitis: Impact of Social Deprivation, Alcohol Consumption, Seasonal and Demographic Factors. Alimentary Pharmacology & Therapeutics, 38, 539-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhou, H., Mei, X., He, X., et al. (2019) Severity Stratification and Prognos-tic Prediction of Patients with Acute Pancreatitis at Early Phase: A Retrospective Study. Medicine, 98, e15275. [Google Scholar] [CrossRef]
|
|
[3]
|
Banks, P.A., Bollen, T.L., Dervenis, C., et al. (2013) Classi-fication of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, F.X., Li, Z.L., Zhang, Z.D., et al. (2019) Prognostic Value of Red Blood Cell Distribution Width for Severe Acute Pancreatitis. World Journal of Gastroenterology, 25, 4739-4748. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ince, A.T. and Baysal, B. (2014) Pathophysiology, Classification and Available Guidelines of Acute Pancreatitis. Turkish Journal of Gastroenterology, 25, 351-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Do, J.H. (2015) Mechanism of Severe Acute Pancreatitis: Focusing on Development and Progression. The Korean Journal of Pancreas and Biliary Tract, 20, 115-123. [Google Scholar] [CrossRef]
|
|
[7]
|
Cuthbertson, C.M. and Christophi, C. (2006) Disturbances of the Microcirculation in Acute Pancreatitis. British Journal of Surgery, 93, 518-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tukiainen, E., Kylänpää, M.L., Repo, H., et al. (2009) Hemostatic Gene Polymorphisms in Severe Acute Pancreatitis. Pancreas, 38, e43-e46. [Google Scholar] [CrossRef]
|
|
[9]
|
Levi, M. and Van Der Poll, T. (2010) Inflammation and Coagulation. Critical Care Medicine, 38, S26-S34. [Google Scholar] [CrossRef]
|
|
[10]
|
Iba, T. and Levy, J.H. (2019) Derangement of the Endothe-lial Glycocalyx in Sepsis. Journal of Thrombosis and Haemostasis, 17, 283-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dumnicka, P., Maduzia, D., Ceranowicz, P., et al. (2017) The Interplay Be-tween Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. International Journal of Molecular Sciences, 18, Article 354. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dumnicka, P., Sporek, M., Mazur-Laskowska, M., et al. (2016) Serum Soluble Fms-Like Tyrosine Kinase 1 (SFlt-1) Predicts the Severity of Acute Pancreatitis. International Journal of Molecular Sciences, 17, Article 2038. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, C., Zhou, X., Ling, L., et al. (2019) Prediction of Mortality and Organ Failure Based on Coagulation and Fibrinolysis Markers in Patients with Acute Pancreatitis: A Retrospective Study. Medicine, 98, e15648. [Google Scholar] [CrossRef]
|
|
[14]
|
Koźma, E.M., Kuźnik-Trocha, K., Winsz-Szczotka, K., et al. (2020) Significant Remodeling Affects the Circulating Glycosaminoglycan Profile in Adult Patients with Both Severe and Mild Forms of Acute Pancreatitis. Journal of Clinical Medicine, 9, Article 1308. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zou, Z., Li, L., Schäfer, N., et al. (2021) Endothelial Glycocalyx in Trau-matic Brain Injury Associated Coagulopathy: Potential Mechanisms and Impact. Journal of Neuroinflammation, 18, Arti-cle No. 134. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jedlicka, J., Becker, B.F. and Chappell, D. (2020) Endothelial Glycocalyx. Critical Care Clinics, 36, 217-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Rosenberg, R.D., Shworak, N.W., Liu, J., et al. (1997) Heparan Sulfate Proteoglycans of the Cardiovascular System. Specific Structures Emerge But How Is Synthesis Regulated? Journal of Clinical Investigation, 99, 2062-2070. [Google Scholar] [CrossRef]
|
|
[18]
|
Sarrazin, S., Lamanna, W.C. and Esko, J.D. (2011) Heparan Sulfate Pro-teoglycans. Cold Spring Harbor Perspectives in Biology, 3, a004952. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Broekhuizen, L.N., Mooij, H.L., Kastelein, J.J., et al. (2009) En-dothelial Glycocalyx as Potential Diagnostic and Therapeutic Target in Cardiovascular Disease. Current Opinion in Lip-idology, 20, 57-62. [Google Scholar] [CrossRef]
|
|
[20]
|
Chappell, D., Jacob, M., Paul, O., et al. (2009) The Gly-cocalyx of the Human Umbilical Vein Endothelial Cell: An Impressive Structure ex Vivo But Not in Culture. Circulation Research, 104, 1313-1317. [Google Scholar] [CrossRef]
|
|
[21]
|
Adamson, R.H. and Clough, G. (1992) Plasma Proteins Modify the Endothelial Cell Glycocalyx of Frog Mesenteric Microvessels. The Journal of Physiology, 445, 473-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
De Agostini, A.I., Watkins, S.C., Slayter, H.S., et al. (1990) Localization of Anticoagulantly Active Heparan Sulfate Proteoglycans in Vascular Endothelium: Antithrombin Binding on Cultured Endothelial Cells and Perfused Rat Aorta. Journal of Cell Biology, 111, 1293-1304. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Schött, U., Solomon, C., Fries, D. and Bentzer, P. (2016) The Endo-thelial Glycocalyx and Its Disruption, Protection and Regeneration: A Narrative Review. Scandinavian Journal of Trau-ma, Resuscitation and Emergency Medicine, 24, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Alphonsus, C.S. and Rodseth, R.N. (2014) The Endothelial Gly-cocalyx: A Review of the Vascular Barrier. Anaesthesia, 69, 777-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pillinger, N.L. and Kam, P. (2017) Endothelial Glycocalyx: Basic Science and Clinical Implications. Anaesth Intensive Care, 45, 295-307. [Google Scholar] [CrossRef]
|
|
[26]
|
Ott, I., Miyagi, Y., Miyazaki, K., et al. (2000) Reversible Reg-ulation of Tissue Factor-Induced Coagulation by Glycosyl Phosphatidylinositol-Anchored Tissue Factor Pathway Inhib-itor. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 874-882. [Google Scholar] [CrossRef]
|
|
[27]
|
Helms, J., Clere-Jehl, R., Bianchini, E., et al. (2017) Thrombomod-ulin Favors Leukocyte Microvesicle Fibrinolytic Activity, Reduces NETosis and Prevents Septic Shock-Induced Coag-ulopathy in Rats. Annals of Intensive Care, 7, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zeng, Y., Zhang, X.F., Fu, B.M. and Tarbell, J.M. (2018) The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. Advances in Experimental Medicine and Biology, 1097, 1-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pries, A.R., Secomb, T.W. and Gaehtgens, P. (2000) The En-dothelial Surface Layer. Pflügers Archiv, 440, 653-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ueda, A., Shimomura, M., Ikeda, M., et al. (2004) Effect of Gly-cocalyx on Shear-Dependent Albumin Uptake in Endothelial Cells. American Journal of Physiology-Heart and Circula-tory Physiology, 287. H2287-H2294. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Thi, M.M., Tarbell, J.M., Weinbaum, S., et al. (2004) The Role of the Glycocalyx in Reorganization of the Actin Cytoskeleton Under Fluid Shear Stress: A “Bumper-Car” Model. Pro-ceedings of the National Academy of Sciences of the United States of America, 101, 16483-16488. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gouverneur, M., Spaan, J.A., Pannekoek, H., et al. (2006) Fluid Shear Stress Stimulates Incorporation of Hyaluronan into Endothelial Cell Glycocalyx. American Journal of Physiolo-gy-Heart and Circulatory Physiology, 290, H458- H452. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shriver, Z., Sundaram, M., Venkataraman, G., et al. (2000) Cleavage of the Antithrombin III Binding Site in Heparin by Hepa-rinases and Its Implication in the Generation of Low Molecular Weight Heparin. Proceedings of the National Academy of Sciences of the United States of America, 97, 10365-10370. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, Y., Haeger, S.M., Suflita, M.A., et al. (2017) Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Gly-cocalyx Reconstitution. American Journal of Respiratory Cell and Molecular Biology, 56, 727-737. [Google Scholar] [CrossRef]
|
|
[35]
|
Reitsma, S., Slaaf, D.W., Vink, H., et al. (2007) The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflügers Archiv—European Journal of Physiology, 454, 345-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kolářová, H., Ambrůzová, B., Svihálková, Šindlerová, L., et al. (2014) Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions. Mediators of Inflam-mation, 2014, Article ID: 694312. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vaccaro, M.I., Ropolo, A., Grasso, D., et al. (2000) Pancreatic Acinar Cells Submitted To Stress Activate TNF-α Gene Expression. Biochemical and Biophysical Research Communications, 268, 485-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kohli, S., Shahzad, K., Jouppila, A., et al. (2022) Thrombosis and In-flammation—A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Frontiers in Cardio-vascular Medicine, 9, Article 866751. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Croce, K. and Libby, P. (2007) Intertwining of Thrombosis and In-flammation in Atherosclerosis. Current Opinion in Hematology, 14, 55-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Henn, V., Slupsky, J.R., Gräfe, M., et al. (1998) CD40 Ligand on Activated Platelets Triggers an Inflammatory Reaction of Endothelial Cells. Nature, 391, 591-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Quinsey, N.S., Greedy, A.L., Bottomley, S.P., et al. (2004) Antithrombin: In Control of Coagulation. The International Journal of Biochemistry & Cell Biology, 36, 386-389. [Google Scholar] [CrossRef]
|
|
[42]
|
Bohdan, N., Espín, S., Águila, S., et al. (2016) Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site. PLOS ONE, 11, e0157834. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ostrowski, S.R. and Johansson, P.I. (2012) Endothelial Gly-cocalyx Degradation Induces Endogenous Heparinization in Patients with Severe Injury and Early Traumatic Coagulopa-thy. Journal of Trauma and Acute Care Surgery, 73, 60-66. [Google Scholar] [CrossRef]
|
|
[44]
|
Wolberg, A.S., Aleman, M.M., Leiderman, K., et al. (2012) Procoagulant Activity in Hemostasis and Thrombosis: Virchow’s Triad Revisited. Anesthesia & Analgesia, 114, 275-285. [Google Scholar] [CrossRef]
|
|
[45]
|
Lupu, F., Kinasewitz, G. and Dormer, K. (2020) The Role of Endothelial Shear Stress on Haemodynamics, Inflammation, Coagulation and Glycocalyx during Sepsis. Journal of Cel-lular and Molecular Medicine, 24, 12258-12271. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chatterjee, S. (2018) Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Frontiers in Physiology, 9, Article 524. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Peghaire, C., Dufton, N.P., Lang, M., et al. (2019) The Transcrip-tion Factor ERG Regulates a Low Shear Stress-Induced Anti-Thrombotic Pathway in the Microvasculature. Nature Communications, 10, Article No. 5014. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ebong, E.E., Lopez-Quintero, S.V., Rizzo, V., et al. (2014) Shear-Induced Endothelial NOS Activation and Remodeling via Heparan Sulfate, Glypican-1, and Syndecan-1. Integra-tive Biology, 6, 338-347. [Google Scholar] [CrossRef]
|
|
[49]
|
Mensah, S.A., Cheng, M.J., Homayoni, H., et al. (2017) Regeneration of Glycocalyx by Heparan Sulfate and Sphingosine 1-Phosphate Restores Inter-Endothelial Communication. PLOS ONE, 12, e0186116. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Jacob, M., Bruegger, D., Rehm, M., et al. (2006) Contrasting Effects of Colloid and Crystalloid Resuscitation Fluids on Cardiac Vascular Permeability. Anesthesiology, 104, 1223-1231. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Jacob, M., Paul, O., Mehringer, L., et al. (2009) Albu-min Augmentation Improves Condition of Guinea Pig Hearts after 4 Hr of Cold Ischemia. Transplantation, 87, 956-965. [Google Scholar] [CrossRef]
|
|
[52]
|
Masola, V., Zaza, G., Onisto, M., et al. (2014) Glycosamino-glycans, Proteoglycans and Sulodexide and the Endothelium: Biological Roles and Pharmacological Effects. International Angiology, 33, 243-254.
|
|
[53]
|
Yang, R., Chen, M., Zheng, J., et al. (2021) The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Frontiers in Immunology, 12, Article 754141. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Schmidt, E.P., Yang, Y., Janssen, W.J., et al. (2012) The Pulmo-nary Endothelial Glycocalyx Regulates Neutrophil Adhesion and Lung Injury during Experimental Sepsis. Nature Medi-cine, 18, 1217-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Henry, C.B. and Duling, B.R. (2000) TNF-α Increases Entry of Macromole-cules into Luminal Endothelial Cell Glycocalyx. American Journal of Physiology-Heart and Circulatory Physiology, 279, H2815-H2823. [Google Scholar] [CrossRef]
|
|
[56]
|
Yu, W.Q., Zhang, S.Y., Fu, S.Q., et al. (2019) Dexame-thasone Protects the Glycocalyx on the Kidney Microvascular Endothelium during Severe Acute Pancreatitis. Journal of Zhejiang University-SCIENCE B, 20, 355-362. [Google Scholar] [CrossRef]
|
|
[57]
|
Chappell, D., Hofmann-Kiefer, K., Jacob, M., et al. (2009) TNF-α In-duced Shedding of the Endothelial Glycocalyx Is Prevented by Hydrocortisone and Antithrombin. Basic Research in Cardiology, 104, 78-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, J., Yao, Y., Xiao, F., et al. (2013) Administration of Dexamethasone Protects Mice against Ischemia/Reperfu- sion Induced Renal Injury by Suppressing PI3K/AKT Signaling. International Journal of Clinical and Experimental Pathology, 6, 2366-2375.
|
|
[59]
|
潘静, 徐晨阳, 宋嗣恩, 等. 糖皮质激素治疗重症急性胰腺炎的研究进展[J]. 医学综述, 2019, 25(1): 82-86.
|