|
[1]
|
Tee, S.Y., Win, K.Y., Teo, W.S., et al. (2017) Recent Progress in Energy-Driven Water Splitting. Advanced Science, 4, Article ID: 1600337. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, K., Qian, Y. and Jiang, H.L. (2023) Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction. Angewandte Chemie International Edition, 62, e202217565. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Greer, K., Zeller, D., Woroniak, J., et al. (2019) Global Trends in Carbon Dioxide (CO2) Emissions from Fuel Combustion in Marine Fisheries from 1950 to 2016. Marine Policy, 107, Article ID: 103382 [Google Scholar] [CrossRef]
|
|
[4]
|
Wang, S., Ai, Z., Niu, X., et al. (2023) Linker Engineering of Sand-wich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H2 Production. Advanced Materials, 35, Article ID: 2302512. [Google Scholar] [CrossRef]
|
|
[5]
|
Xiao, J.D., Li, R. and Jiang, H.L. (2022) Metal-Organic Frame-work-Based Photocatalysis for Solar Fuel Production. Small Methods, 7, Article ID: 2201258. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wu, Q., Luan, H. and Xiao, F.S. (2022) Theoretical Design for Zeolite Synthesis. Science China Chemistry, 65, 1683-1690. [Google Scholar] [CrossRef]
|
|
[7]
|
Tian, Y. and Zhu, G. (2020) Porous Aromatic Frameworks (PAFs). Chemical Reviews, 120, 8934-8986. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, J., Abazari, R., Adegoke, K.A., et al. (2023) Metal-Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Coordination Chem-istry Reviews, 469, Article ID: 214664. [Google Scholar] [CrossRef]
|
|
[9]
|
Yuan, S., Feng, L., Wang, K., et al. (2018) Stable Metal-Organic Frame-works: Design, Synthesis, and Applications. Advanced Materials, 30, Article ID: 1704303. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kitao, T., Zhang, Y., Kitagawa, S., et al. (2017) Hybridization of MOFs and Polymers. Chemical Society Reviews, 46, 3108-3133. [Google Scholar] [CrossRef]
|
|
[11]
|
Li X., Yang X., Xue H., et al. (2020) Metal-Organic Frameworks as a Platform for Clean Energy Applications. EnergyChem, 2, Article ID: 100027. [Google Scholar] [CrossRef]
|
|
[12]
|
Alkhatib, I.I., Garlisi, C., Pagliaro, M., et al. (2020) Metal-Organic Frameworks for Photocatalytic CO2 Reduction under Visible Radiation: A Review of Strategies and Applications. Catalysis Today, 340, 209-224. [Google Scholar] [CrossRef]
|
|
[13]
|
Dhakshinamoorthy, A., Asiri, A.M. and García, H. (2016) Met-al-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55, 5414-5445. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, Q., Xu, Q., Jiang, H.L., et al. (2017) Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chemical Society Reviews, 46, 4774-4808. [Google Scholar] [CrossRef]
|
|
[15]
|
Guo, J., Wan, Y., Zhu, Y., et al. (2020) Advanced Photocatalysts Based on Metal Nanoparticle/Metal-Organic Framework Composites. Nano Research, 14, 2037-2052. [Google Scholar] [CrossRef]
|
|
[16]
|
Jiang, Y., Yu, Y., Zhang, X., et al. (2021) N-Heterocyclic Car-bene-Stabilized Ultrasmall Gold Nanoclusters in a Metal-Organic Framework for Photocatalytic CO2 Reduction. Angewandte Chemie International Edition, 60, 17388-17393. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, Y.Z., Gu, B., Uchida, T., et al. (2019) Location Determination of Met-al Nanoparticles Relative to a Metal-Organic Framework. Nature Communications, 10, Article No. 3462. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sun, Z.X., Sun, K., Gao, M.L., et al. (2022) Optimizing Pt Electronic States through Formation of a Schottky Junction on Non-Reducible Metal-Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie International Edition, 61, e202206108. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
He, T., Kong, X.J., Zhou, J., et al. (2021) A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal-Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 143, 9901-9911. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fu, Y., Sun, L., Yang, H., et al. (2016) Visible-Light-Induced Aerobic Photo-catalytic Oxidation of Aromatic Alcohols to Aldehydes over Ni-Doped NH2-MIL-125(Ti). Applied Catalysis B: Environmental, 187, 212-217. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhou, K., Shang, G., Hsu, H.H., et al. (2023) Emerging 2D Metal Ox-ides: From Synthesis to Device Integration. Advanced Materials, 35, Article ID: 2207774. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Da, P., Zheng, Y., Hu, Y., et al. (2023) Synthesis of Bandgap-Tunable Transition Metal Sulfides through Gas-Phase Cation Exchange-Induced Topological Transformation. Angewandte Chemie In-ternational Edition, 62, e202301802. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, A., Zhang, L., Wang, F., et al. (2022) Rational Design of Porous Ni-Co-Fe Ternary Metal Phosphides Nanobricks as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Applied Catalysis B: Environmental, 310, Article ID: 121353. [Google Scholar] [CrossRef]
|
|
[24]
|
Aguilera-Sigalat, J. and Bradshaw, D. (2016) Synthesis and Applications of Metal-Organic Framework-Quantum Dot (QD@MOF) Composites. Coordination Chemistry Reviews, 307, 267-291. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhang, J., Bai, T., Huang, H., et al. (2020) Metal-Organic-Framework-Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting. Advanced Materials, 32, Article ID: 2004747. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ghosh, A., Karmakar, S., Rahimi, F.A., et al. (2022) Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF Toward Photocatalytic Hydrogen Evolution. ACS Applied Mate-rials & Interfaces, 14, 25220-25231. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jiang, Z., Xu, X., Ma, Y., et al. (2020) Filling Metal-Organic Framework Mesopores with TiO2 for CO2 Photoreduction. Nature, 586, 549-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wen, Q., Li, D., Li, H., et al. (2023) Synergetic Effect of Photocatalysis and Peroxymonosulfate Activated by Co/Mn-MOF-74@G-C3N4 Z-Scheme Photocatalyst for Removal of Tetracycline Hydro-chloride. Separation and Purification Technology, 313, Article ID: 123518. [Google Scholar] [CrossRef]
|
|
[29]
|
Liu, L., Meng, H., Chai, Y., et al. (2023) Enhancing Built-In Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium-Based Metal-Organic Frameworks. Angewandte Chemie International Edition, 62, e202217897. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Samy, M., Ibrahim, M.G., Fujii, M., et al. (2021) CNTs/MOF-808 Painted Plates for Extended Treatment of Pharmaceutical and Agrochemical Wastewaters in a Novel Photocatalytic Reactor. Chemical Engineering Journal, 406, Article ID: 127152. [Google Scholar] [CrossRef]
|
|
[31]
|
Thi, Q.V., Tamboli, M.S., Thanh Hoai, T.Q., et al. (2020) A Nanostructured MOF/Reduced Graphene Oxide Hybrid for Enhanced Photocatalytic Effi-ciency under Solar Light. Materials Science and Engineering: B, 261, Article ID: 114678. [Google Scholar] [CrossRef]
|
|
[32]
|
Li, L., Wang, X.S., Liu, T.F., et al. (2020) Titanium-Based MOF Mate-rials: from Crystal Engineering to Photocatalysis. Small Methods, 4, Article ID: 2000486. [Google Scholar] [CrossRef]
|
|
[33]
|
Zhang, Y., Liu, H., Gao, F., et al. (2022) Application of MOFs and COFs for Photocatalysis in CO2 Reduction, H2 Generation, and Environmental Treatment. EnergyChem, 4, Article ID: 100078. [Google Scholar] [CrossRef]
|
|
[34]
|
Han, W., Shao, L.H., Sun, X.J., et al. (2022) Constructing Cu Ion Sites in MOF/COF Heterostructure for Noble-Metal-Free Photoredox Catalysis. Applied Catalysis B-Environmental, 317, 121710-121718. [Google Scholar] [CrossRef]
|
|
[35]
|
Huang, H.B., Fang, Z.B., Wang, R., et al. (2022) Engineering Hierar-chical Architecture of Metal-Organic Frameworks for Highly Efficient Overall CO2 Photoreduction. Small, 18, Article ID: 2200407. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Peng, Y., Zhao, M., Chen, B., et al. (2017) Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core-Shell Hybrid Materials. Advanced Materials, 30, Article ID: 1705454. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yuan, G., Tan, L., Wang, P., et al. (2019) MOF-COF Composite Photo-catalysts: Design, Synthesis, and Mechanism. Crystal Growth & Design, 22, 893-908. [Google Scholar] [CrossRef]
|
|
[38]
|
Jin, X., Fan, X., Tian, J., et al. (2019) MoS2 Quantum Dot Decorated G-C3N4 Composite Photocatalyst with Enhanced Hydrogen Evolution Performance. RSC Advances, 6, 52611-52619. [Google Scholar] [CrossRef]
|
|
[39]
|
Shi, Y. and Zhang, B. (2019) Correction: Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chemical Society Reviews, 45, 1781-1781. [Google Scholar] [CrossRef]
|
|
[40]
|
Chaubey, R., Sahu, S., James, O.O., et al. (2013) A Review on Development of Industrial Processes and Emerging Techniques for Production of Hydrogen from Renewable and Sustainable Sources. Re-newable and Sustainable Energy Reviews, 23, 443-462. [Google Scholar] [CrossRef]
|
|
[41]
|
Kudo, A. and Miseki, Y. (2009) Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Reviews, 38, 253-278. [Google Scholar] [CrossRef]
|
|
[42]
|
Xiao, J.D., Shang, Q., Xiong, Y., et al. (2016) Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie International Edition, 55, 9389-9393. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Guo, F., Wei, Y.P., Wang, S.Q., et al. (2013) Pt Nanoparticles Embedded in Flowerlike NH2-UiO-68 for Enhanced Photocatalytic Carbon Dioxide Reduc-tion. Journal of Materials Chemistry A, 7, 26490-26495. [Google Scholar] [CrossRef]
|
|
[44]
|
Du, Y.D., Wang, S., Du, H.W., et al. (2013) Organophotocatalysed Synthesis of 2-Piperidinones in One Step via [1 + 2 + 3] Strategy. Nature Communications, 14, Article No. 5339. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Emmanuel, M.A., Bender, S.G., Bilodeau, C., et al. (2013) Photobio-catalytic Strategies for Organic Synthesis. Chemical Reviews, 123, 5459-5520. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Liu, K., Meng, J. and Jiang, X. (2023) Gram-Scale Synthesis of Sul-foxides via Oxygen Enabled by Fe(NO3)3·9H2O. Organic Process Research & Development, 27, 1198-1202. [Google Scholar] [CrossRef]
|
|
[47]
|
Skolia, E., Gkizis, P.L., Kokotos, C.G., et al. (2022) Aerobic Photocataly-sis: Oxidation of Sulfides to Sulfoxides. Journal of Chemistry, 87, e202200008. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zheng, D.Y., Chen, E.X., Ye, C.R., et al. (2023) High-Efficiency Pho-to-Oxidation of Thioethers over C60@PCN-222 under Air. Journal of Materials Chemistry A, 7, 22084-22091. [Google Scholar] [CrossRef]
|
|
[49]
|
Li, P., Yan, X., Gao, S., et al. (2021) Boosting Photocatalytic Hydrogen Pro-duction Coupled with Benzyl Alcohol Oxidation over CdS/Metal-Organic Framework Composites. Chemical Engineering Journal, 421, Article ID: 129870. [Google Scholar] [CrossRef]
|