|
[1]
|
何青, 崔皓钧, 马书荣. 外生菌根对植物非生物胁迫的缓解作用及作用机理研究进展[J]. 微生物学通报, 2021, 48(5): 1755-1764.
|
|
[2]
|
Bennett, A.E. and Groten, K. (2022) The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. Annual Review of Plant Biology, 73, 649-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kakouridis, A., Hagen, J.A., Kan, M.P., et al. (2022) Routes to Roots: Direct Evidence of Water Transport by Arbuscular Mycorrhizal Fungi to Host Plants. New Phytologist, 236, 210-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Israel, A., Langrand, J., Fontaine, J., et al. (2022) Signifi-cance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods, 11, Article 2591. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xia, H., Yang, C., Liang, Y., et al. (2022) Melatonin and Arbuscular Mycorrhizal Fungi Synergistically Improve Drought Toleration in Kiwifruit Seedlings by Increasing Mycorrhizal Colo-nization and Nutrient Uptake. Frontiers in Plant Science, 13, Article 1073917. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chandrasekaran, M. (2022) Arbuscular Mycorrhizal Fungi Medi-ated Alleviation of Drought Stress via Non-Enzymatic Antioxidants: A Meta-Analysis. Plants, 11, Article 2448. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hu, S., Hu, B., Chen, Z., et al. (2020) Antioxidant Response in Ar-buscular Mycorrhizal Fungi Inoculated Wetland Plant under Cr Stress. Environmental Research, 191, Article ID: 110203. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, H., Zhang, L., Wu, B., et al. (2023) Physiological and Proteomic Analyses Reveal the Important Role of Arbuscular Mycorrhizal Fungi on Enhancing Photosynthesis in Wheat under Cadmium Stress. Ecotoxicology and Environmental Safety, 261, Article ID: 115105. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hashem, A., Alqarawi, A.A., Radhakrishnan, R., et al. (2018) Arbuscular Mycorrhizal Fungi Regulate the Oxidative System, Hormones and Ionic Equilibrium to Trigger Salt Stress Tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences, 25, 1102-1114. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jia, T., Wang, J., Chang, W., et al. (2019) Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress. International Journal of Mo-lecular Sciences, 20, Article 788. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, Y., Lu, J., Cui, L., et al. (2023) The Multifaceted Roles of Arbus-cular Mycorrhizal Fungi in Peanut Responses to Salt, Drought, and Cold Stress. BMC Plant Biology, 23, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, C., Dai, Z., Cui, M., et al. (2018) Arbuscular Mycorrhizal Fungi Alleviate Boron Toxicity in Puccinellia tenuiflora under the Combined Stresses of Salt and Drought. Environmen-tal Pollution, 240, 557-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zong, J., Zhang, Z., Huang, P. and Yang, Y.H. (2023) Arbus-cular Mycorrhizal Fungi Alleviates Salt Stress in Xanthoceras sorbifolium through Improved Osmotic Tolerance, Anti-oxidant Activity, and Photosynthesis. Frontiers in Microbiology, 14, Article 1138771. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liang, S.C., Jiang, Y., Li, M.B., et al. (2019) Improving Plant Growth and Alleviating Photosynthetic Inhibition from Salt Stress Using AMF in Alfalfa Seedlings. Journal of Plant In-teractions, 14, 482-491. [Google Scholar] [CrossRef]
|
|
[15]
|
Li, W., Zhai, Y., Hu, X., et al. (2023) Effects of Arbuscular Mycorrhizal Fungi on the Growth and Metabolism of Perennial Ryegrass (Lolium perenne) under Salt Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51, Article12649. [Google Scholar] [CrossRef]
|
|
[16]
|
Liang, B.B., Wang, W.J., Fan, X.X., et al. (2021) Arbuscular Mycorrhizal Fungi Can Ameliorate Salt Stress in Elaeagnus an-gustifolia by Improving Leaf Photosynthetic Function and Ultrastructure. Plant Biology, 23, 232-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhao, L., Yang, T., Zhou, J. and Peng, X.W. (2023) Effects of Arbuscular Mycorrhizal Fungi on Robinia pseudoacacia L. Growing on Soils Contaminated with Heavy Metals. Journal of Fungi, 9, Article 684. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, X., Zhou, M., Shi, F., et al. (2023) Influence of Arbuscular Mycorrhi-zal Fungi on Mercury Accumulation in Rice (Oryza sativa L.): From Enriched Isotope Tracing Perspective. Ecotoxicolo-gy and Environmental Safety, 255, Article ID: 114776. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, H., Wang, H., Zhao, J., et al. (2022) Physio-Biochemical and Transcriptomic Features of Arbuscular Mycorrhizal Fungi Re-lieving Cadmium Stress in Wheat. Antioxidants, 11, Article 2390. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Pan, J., Cao, S., Xu, G., et al. (2023) Comprehensive Analysis Reveals the Underlying Mechanism of Arbuscular Mycorrhi-zal Fungi in Kenaf Cadmium Stress Alleviation. Chemosphere, 314, Article ID: 137566. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, W., Chen, K., Li, Q., et al. (2023) Effects of Arbuscu-lar Mycorrhizal Fungi on Alleviating Cadmium Stress in Medicago truncatula Gaertn. Plants, 12, Article 547. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gao, Y., An, T., Kuang, Q., et al. (2023) The Role of Arbuscular Mycorrhizal Fungi in the Alleviation of Cadmium Stress in Cereals: A Multilevel Meta-Analysis. The Science of the Total Environment, 902, Article ID: 166091. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, Y., Huang, B., Xu, J., et al. (2022) Heavy Metal Do-mestication Enhances Beneficial Effects of Arbuscular Mycorrhizal Fungi on Lead (Pb) Phytoremediation Efficiency of Bidens Parviflora through Improving Plant Growth and Root Pb Accumulation. Environmental Science and Pollution Research International, 29, 32988-33001. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhou, Y., Wei, M., Li, Y., et al. (2023) Arbuscular Mycorrhizal Fungi Improve Growth and Tolerance of Platycladus orientalis under Lead Stress. International Journal of Phytoreme-diation, 25, 1967-1978. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, X., Hu, W., Xie, X., et al. (2021) Arbuscular My-corrhizal Fungi Promote Lead Immobilization by Increasing the Polysaccharide Content within Pectin and Inducing Cell Wall Peroxidase Activity. Chemosphere, 267, Article ID: 128924. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, X., Zhang, H., Lou, X., et al. (2019) Mycorrhizal and Non-Mycorrhizal Medicago Truncatula Roots Exhibit Differentially Regulated NADPH Oxidase and Antioxidant Response under Pb Stress. Environmental Experimental Botany, 164, 10-19. [Google Scholar] [CrossRef]
|
|
[27]
|
Hristozkova, M., Geneva, M., Stancheva, I., et al. (2016) Contribution of Arbuscular Mycorrhizal Fungi in Attenuation of Heavy Metal Impact on Calendula officinalis Develop-ment. Applied Soil Ecology, 101, 57-63. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, J., Meng, B., Chai, H., et al. (2019) Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses via Altering Antioxi-dant Enzyme Activities and Photosynthesis. Frontiers in Plant Science, 10, Article 499. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
李越, 李利, 张斌, 等. 接种AMF提高干旱胁迫下土壤微生物活性和燕麦抗旱能力[J]. 植物营养与肥料学报, 2023, 29(6): 1135-1149.
|
|
[30]
|
Metwally, A., Azoon, M., Nagady, N., et al. (2019) Arbuscular Mycorrhizal Symbiosis Alleviates Drought Stress Imposed On Wheat Plants (Triticum aestivum L.). Applied Ecology Environmental Research, 17, 13713-13727. [Google Scholar] [CrossRef]
|
|
[31]
|
Han, Y., Lou, X., Zhang, W., et al. (2022) Arbuscular My-corrhizal Fungi Enhanced Drought Resistance of Populus cathayana by Regulating the 14-3-3 Family Protein Genes. Microbiology Spectrum, 10, e0245621. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, Y., Zhang, Y., Luo, L., et al. (2022) Genome Wide Identi-fication of Respiratory Burst Oxidase Homolog (Rboh) Genes in Citrus Sinensis and Functional Analysis of CsRbohD in Cold Tolerance. International Journal of Molecular Sciences, 23, Article 648. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, Z., Zhang, Y., Liu, C., et al. (2022) Arbuscular Mycorrhizal Fungi Contribute to Reactive Oxygen Species Homeostasis of Bombax ceiba L. under Drought Stress. Frontiers in Microbiol-ogy, 13, Article 991781. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mathur, S., Agnihotri, R., Sharma, M.P., et al. (2021) Effect of High-Temperature Stress on Plant Physiological Traits and Mycorrhizal Symbiosis in Maize Plants. Journal of Fungi, 7, Article 867. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mathurs, S. and Anjana, J. (2020) Arbuscular Mycorrhizal Fungi Protects Maize Plants from High Temperature Stress by Regulating Photosystem II Heterogeneity. Industrial Crops and Products, 143, Article ID: 111937. [Google Scholar] [CrossRef]
|
|
[36]
|
Indermaur, E.J., Day, C.T.C. and Smart, C.D. (2022) First Re-port of Didymella rhei Causing Leaf Spot on Rhubarb in New York. Plant Disease, 107, 222. [Google Scholar] [CrossRef]
|
|
[37]
|
Yan, Z., Ma, T.S., Guo, S., et al. (2021) Leaf Anatomy, Photosynthesis and Chlorophyll Fluorescence of Lettuce as Influenced by Arbuscular Mycorrhizal Fungi under High Temperature Stress. Scientia Horticulturae, 280, Article ID: 109933. [Google Scholar] [CrossRef]
|
|
[38]
|
Zhu, X.C., Song, F.B. and Liu, F.L. (2016) Altered Amino Acid Profile of Arbuscular Mycorrhizal Maize Plants under Low Temperature Stress. Journal of Plant Nutrition and Soil Sci-ence, 179, 186-189. [Google Scholar] [CrossRef]
|
|
[39]
|
朱恒达, 王策, 李伟, 等. 丛枝菌根真菌和外源褪黑素提高黄瓜抗冷性的生理机制[J]. 植物生理学报, 2022, 58(7): 1254-1262.
|