|
[1]
|
Knop, L., Gandini, L.G., Shintcovsk, R.L., et al. (2015) Scientific Use of the Finite Element Method in Orthodontics. Dental Press Journal of Orthodontics, 20, 119-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, H., Li, J., Zou, Z., et al. (2011) Fracture Simulation of Restored Teeth Using a Continuum Damage Mechanics Failure Model. Dental Materials, 27, E125-E133. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kamble, R.H., Lohkare, S., Hararey, P.V., et al. (2012) Stress Distribution Pattern in a Root of Maxillary Central Incisor Having Various Root Morphologies: A Finite Element Study. The Angle Orthodontist, 82, 799-805. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tuener, M.S., Clough, R.W. and Martin, H.C. (1956) Stiffness and De-flection Analysis Complex Structure. Journal of the Aeronautical Sciences, 23, 805-809. [Google Scholar] [CrossRef]
|
|
[5]
|
Thresher, R.W. and Saito, G.E. (1973) The Stress Analysis of Human Teeth. Journal of Biomechanics, 6, 443-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Farah, J.W., Craig, R.G. and Sikarskie, D.L. (1973) Photoe-lastic and Finite Element Stress Analysis of a Restored Axisymmetric First Molar. Journal of Biomechanics, 6, 511-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
周书敏. 用三维有限单元法对健康牙周膜在11种载荷下应力分布的研究[J]. 中华口腔医学杂志, 1989, 24(6): 334-337.
|
|
[8]
|
Singh, J.R., Kambalyal, P., Jain, M., et al. (2016) Revolution in Orthodontics: Finite Element Analysis. Journal of International Society of Preventive and Commu-nity Dentistry, 6, 110-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pancherz, H., Zieber, K. and Hoyer, B. (1997) Cephalometric Characteristics of Class II Division 1 and Class II Division 2 Malocclusions: A Comparative Study in Children. The Angle Orthodontist, 67, 111-120.
|
|
[10]
|
Trivedi, S. (2014) Finite Element Analysis: A Boon to Dentistry. Journal of Oral Biology and Craniofacial Research, 4, 200-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zadi, Z.H., Bidhendi, A.J., Shariati, A., et al. (2021) A Clinically Friendly Viscoelastic Finite Element Analysis Model of the Mandible with Herbst Appliance. American Journal of Or-thodontics and Dentofacial Orthopedics, 160, 215-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhu, C., Li, R., Yuan, L.Z., et al. (2022) Effects of the Advanced Mandibular Spring on Mandibular Retrognathia Treatment: A Three-Dimensional Finite Element Study. BMC Oral Health, 22, Article No. 271. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Al Hamdany, A.K., Hasan, L.A., Alrawi, M.N.A., et al. (2023) PowerScope 2 Functional Appliance: A 3D Finite Element Simulation of Its Action on the Mandible. Journal of Oral Bi-ology and Craniofacial Research, 13, 299-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cozzani, M., Sadri, D., Nucci, L., et al. (2020) The Effect of Al-exander, Gianelly, Roth, and MBT Bracket Systems on Anterior Retraction: A 3-Dimen-Sional Finite Element Study. Clinical Oral Investigations, 24, 1351-1357. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cozzani, M., Nucci, L., Lupini, D., et al. (2020) The Ideal Inser-tion Angle after Immediate Loading in Jeil, Storm, and Thunder Miniscrews: A 3D-FEM Study. International Orthodon-tics, 18, 503-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jorge, M., Vaz, M., Lopes, J., et al. (2021) Biomechanical Effects of Teuscher Activator in Hyperdivergent Class II Malocclusion Treatment: A Finite Element Analysis. Journal of Clinical and Experimental Dentistry, 13, E1124- E1130. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sevillano, M.G.C., Kemmoku, D.T., Noritomi, P.Y., et al. (2021) New Highlights on Effects of Rapid Palatal Expansion on the Skull Base: A Finite Element Analysis Study. Dental Press Journal of Orthodontics, 26, e2120162. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Balakrishnan, R., Sengottuvel, N., Altaf, S.K., et al. (2023) Three-Dimensional Finite Element Analysis of Maxillary Protraction Using Diverse Modes of Rapid Palatal Ex-pansion. Cureus, 15, e36328. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nowak, R., Olejnik, A., Gerber, H., et al. (2021) Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study. Materials, 14, Article No. 1152. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cozzani, M., Nucci, L., Lupini, D., et al. (2022) Two Different Designs of Mini-Screw Assisted Maxillary Expanders, Using FEM to Analyse Stress Distribution in Craniofacial Structures and Anchor Teeth. International Orthodontics, 20, Article ID: 100607. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kravitz, N.D. and Kusnoto, B. (2007) Risks and Complications of Orthodontic Miniscrews. American Journal of Orthodontics and Dentofacial Orthopedics, 131, S43-S51. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ghorbanyjavadpour, F., Kazemi, P., Moradinezhad, M., et al. (2019) Distribution and Amount of Stresses Caused by Insertion or Removal of Orthodontic Miniscrews into the Maxil-lary Bone: A Finite Element Analysis. International Orthodontics, 17, 758-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Auwer, O.N., Shamaa, M.S. and Hammad, S.M. (2021) A 3-Dimensional Finite Element Analysis to Evaluate the Impact of Force Direction, Insertion Angle, and Cortical Bone Thickness on Mini-Screw and Its Surrounding Bone. Journal of Dental Research, Dental Clinics, Dental Prospects, 15, 262-268. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ye, Y., Jiao, J., Fan, S., He, J., et al. (2022) Optimization Analysis of Two-Factor Continuous Variable between Thread Depth and Pitch of Microimplant under Toque Force. Computational and Mathematical Methods in Medicine, 20, Article ID: 2119534. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mazhari, M., Moradinejad, M., Mazhary, M., et al. (2022) Effects of Rigid and Nonrigid Connections between the Miniscrew and Anchorage Tooth on Dynamics, Efficacy, and Adverse Ef-fects of Maxillary Second Molar Protraction: A Finite Element Analysis. BioMed Research International, 14, Article ID: 4714347. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Vilanova, L., Bellini-Pereira, S.A., Patel, M.P., et al. (2023) Finite El-ement Analysis of Two Skeletally Anchored Maxillary Molar Distalisation Methods. Journal of Orthodontics, 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ugarte, O.M., Cattaneo, P.M., Roscoe, M.G., et al. (2023) In-trusion of Overerupted Periodontally Compromised Posterior Teeth Using Orthodontic Mini Implants: A Mechanobi-ological Finite Element Study. Orthodontics & Craniofacial Research, 26, 239-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cai, Y., He, B., Yang, X., et al. (2015) Optimization of Configuration of Attachment in Tooth Translation with Transparent Tooth Correction by Appropriate Moment-to-Force Ratios: Biome-chanical Analysis. Bio-Medical Materials and Engineering, 26, S507-517. [Google Scholar] [CrossRef]
|
|
[29]
|
Ghannam, M. and Kamiloğlu, B. (2021) Effects of Skeletally Supported Anterior En Masse Retraction with Varied Lever Arm Lengths and Locations in Lingual Orthodontic Treatment: A 3D Finite Element Study. BioMed Research International, 17, Article ID: 9975428. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kim, W.H., Hong, K., Lim, D., et al. (2020) Optimal Position of At-tachment for Removable Thermoplastic Aligner on the Lower Canine Using Finite Element Analysis. Materials (Basel), 13, Article No. 3369. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lyu, X., Cao, X., Yan, J., et al. (2023) Biomechanical Effects of Clear Aligners with Different Thicknesses and Gingival-Margin Morphology for Appliance Design Optimization. American Journal of Orthodontics and Dentofacial Orthopedics, 164, 239-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, Q., Dai, D., Wang, J., et al. (2022) Biomechanical Analy-sis of Effective Mandibular En-Masse Retraction Using Class II Elastics with a Clear Aligner: A Finite Element Study. Progress in Orthodontics, 23, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Paetyangkul, A., Türk, T., Elekdağ-Türk, S., et al. (2009) Phys-ical Properties of Root Cementum: Part 14. The Amount of Root Resorption after Force Application for 12 Weeks on Maxillary and Mandibular Premolars: A Microcomputed- Tomography Study. American Journal of Orthodontics and Dentofacial Orthopedics, 136, 491-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhong, J., Chen, J., Weinkamer, R., et al. (2019) In Vivo Effects of Different Orthodontic Loading on Root Resorption and Correlation with Mechanobiological Stimulus in Periodontal Ligament. Journal of the Royal Society Interface, 16, Article ID: 20190108. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Harikrishnan, P., Magesh, V., Ajayan, A.M., et al. (2020) Finite Ele-ment Analysis of Torque Induced Orthodontic Bracket Slot Deformation in Various Bracket-Archwire Contact Assembly. Computer Methods and Programs in Biomedicine, 197, Article ID: 105748. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Harikrishnan, P. and Magesh, V. (2021) Stress Distribution and Deformation in Six Tie Wings Orthodontic Bracket during Simulated Tipping—A Finite Element Analysis. Computer Methods and Programs in Biomedicine, 200, Article ID: 105835. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, X., Li, M.Q., Guo, J., et al. (2022) An Analysis of the Optimal Intrusion Force of the Maxillary Central Incisor with Root Horizontal Resorption Using the Finite Element Method and Curve Fitting. Computer Methods in Biomechanics and Biomedical Engineering, 25, 1471-1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Dot, G., Licha, R., Goussard, F., et al. (2021) A New Pro-tocol to Accurately Track Long-Term Orthodontic Tooth Movement and Support Patient-Specific Numerical Modeling. Journal of Biomechanics, 129, Article ID: 110760. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wu, J., Liu, Y., Li, B., et al. (2022) Development and Verifi-cation of a Constitutive Model for Human Periodontal Ligament Based on Finite Element Analysis. Computer Methods in Biomechanics and Biomedical Engineering, 25, 1051- 1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Limjeerajarus, N., Sratong-On, P., Dhammayannarangsi, P., et al. (2023) Determination of the Compressive Modulus of Elasticity of Periodontal Ligament Derived from Human First Premolars. Heliyon, 9, e14276. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, Y., Gao, J., Wang, X., et al. (2023) Biomechanical Fac-tors in the Open Gingival Embrasure Region during the Intrusion of Mandibular Incisors: A New Model through Finite Element Analysis. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1149472. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Revilla-León, M., Gómez-Polo, M., Vyas, S., et al. (2023) Artifi-cial Intelligence Applications in Implant Dentistry: A Systematic Review. Journal of Prosthetic Dentistry, 129, 293-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cortona, A., Rossini, G., Parrini, S., et al. (2020) Clear Align-er Orthodontic Therapy of Rotated Mandibular Round- Shaped Teeth: A Finite Element Study. The Angle Orthodontist, 90, 247-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cervino, G., Fiorillo, L., Arzukanyan, A.V., et al. (2020) Application of Bioengineering Devices for Stress Evaluation in Dentistry: The Last 10 Years FEM Parametric Analysis of Outcomes and Current Trends. Minerva Stomatologica, 69, 55-62. [Google Scholar] [CrossRef]
|
|
[45]
|
Zhou, J., Song, Y., Shi, X., et al. (2021) Tensile Creep Mechanical Behavior of Periodontal Ligament: A Hyper-Vis- coelastic Constitutive Model. Computer Methods and Pro-grams in Biomedicine, 207, Article ID: 106224. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Maceri, F., Marino, M. and Vairo, G. (2010) A Unified Mul-tiscale Mechanical Model for Soft Collagenous Tissues with Regular Fiber Arrangement. Biomech, 43, 355-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jongsma, L.A., Nde, J., Kleverlaan, C.J., et al. (2011) Re-duced Contraction Stress Formation Obtained by a Two-Step Cementation Procedure for Fiber Posts. Dental Materials, 27, 670-676. [Google Scholar] [CrossRef] [PubMed]
|