振动声成像技术的研究进展
Research Progress of Vibro-Acoustography Technology
DOI: 10.12677/ACM.2024.142538, PDF,   
作者: 李 雪:重庆医科大学附属第二医院呼吸与危重症医学科,重庆;重庆市南岸区第三人民医院内一科,重庆;程潇潇:重庆医科大学附属第二医院超声科,重庆;蒋幼凡:重庆医科大学附属第二医院呼吸与危重症医学科,重庆;胡天洋*:重庆医科大学附属第二医院精准医学中心,重庆
关键词: 振动声成像超声成像声辐射力微钙化Vibro-Acoustography Ultrasound Imaging Acoustic Radiation Force Microcalcification
摘要: 自1998年梅奥医学中心的Fatemi M、Greenleaf JF提出超声激发振动声成像(ultrasound-stimulated vibro-acoustic spectrography)的概念,即简称的振动声成像(vibro-acoustography),多年来国内外众多学者围绕此技术做了大量研究,尤其是在微钙化的检测领域作了大量工作,使该成像技术得到蓬勃的发展。振动声成像是振动声技术应用最广泛的领域,本文以振动声成像为切入点,对振动声技术的研究进展作一综述。
Abstract: Since 1998, Fatemi M and Greenleaf JF of Mayo Medical Centre proposed the concept of ultra-sound-stimulated vibro-acoustic spectrography, or vibro-acoustography for short, many scholars have been working on this technology for many years. Over the years, the scholars had done a lot of research around vibro-acoustography, especially in the field of microcalcification detection, so that vibro-acoustography has been vigorously developed. Vibro-acoustography is the most widely used field of vibro-acoustic technology, and this article takes vibro-acoustography as an entry point to give a review of the research progress of vibro-acoustic technology.
文章引用:李雪, 程潇潇, 蒋幼凡, 胡天洋. 振动声成像技术的研究进展[J]. 临床医学进展, 2024, 14(2): 3866-3874. https://doi.org/10.12677/ACM.2024.142538

参考文献

[1] Fatemi, M. and Greenleaf, J.F. (1998) Ultrasound-Stimulated Vibro-Acoustic Spectrography. Science, 280, 82-85. [Google Scholar] [CrossRef] [PubMed]
[2] Fatemi, M. and Greenleaf, J.F. (2000) Probing the Dynamics of Tissue at Low Frequencies with the Radiation Force of Ultrasound. Physics in Medicine and Biology, 45, 1449-1464. [Google Scholar] [CrossRef] [PubMed]
[3] Alizad, A., Fatemi, M., Nishimura, R.A., et al. (2002) Detection of Calcium Deposits on Heart Valve Leaflets by Vibro-Acoustography: An in Vitro Study. Journal of the American Society of Echocardiography, 15, 1391-1395. [Google Scholar] [CrossRef] [PubMed]
[4] Baum, J.K., Comstock, C.H., Joseph, L., et al. (1980) Intramammary Arterial Calcifications Associated with Diabetes. Radiology, 136, 61-62. [Google Scholar] [CrossRef] [PubMed]
[5] Crystal, P., Crystal, E., Leor, J., et al. (2000) Breast Artery Calcium on Routine Mammography as a Potential Marker for Increased Risk of Cardiovascular Disease. American Journal of Cardiology, 86, 216-217. [Google Scholar] [CrossRef
[6] Alizad, A., Fatemi, M., Whaley, D.H., et al. (2004) Appli-cation of Vibro-Acoustography for Detection of Calcified Arteries in Breast Tissue. Journal of Ultrasound in Medicine, 23, 267-273. [Google Scholar] [CrossRef] [PubMed]
[7] Alizad, A., Fatemi, M., Wold, L.E., et al. (2004) Performance of Vibro-Acoustography in Detecting Microcalcifications in Excised Human Breast Tissue: A Study of 74 Tissue Samples. IEEE Transactions on Medical Imaging, 23, 307-312. [Google Scholar] [CrossRef
[8] Alizad, A., Whaley, D.H., Greenleaf, J.F., et al. (2005) Potential Applications of Vibro-Acoustography in Breast Imaging. Technology in Cancer Research & Treatment, 4, 151-157. [Google Scholar] [CrossRef] [PubMed]
[9] Hosseini, H.G., Alizad, A., Fatemi, M., et al. (2005) Registra-tion of Vibro-Acoustography Images and X-Ray Mammography. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 17-18 January 2006, 1846-1849. [Google Scholar] [CrossRef
[10] Alizad, A., Whaley, D.H., Greenleaf, J.F., et al. (2006) Critical Issues in Breast Imaging by Vibro-Acoustography. Ultrasonics, 44, e217-e220. [Google Scholar] [CrossRef] [PubMed]
[11] Gholamhosseini, H., Alizad, A., Fatemi, M., et al. (2006) Fusion of Vibro-Acoustography Images and X-Ray Mammography. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, 30 August-3 September 2006, 2803-2806. [Google Scholar] [CrossRef
[12] Hosseini, H.G., Alizad, A., Fatemi, M., et al. (2007) Integration of Vibro-Acoustography Imaging Modality with the Traditional Mammography. International Journal of Biomedical Imaging, 2007, Article ID: 040980. [Google Scholar] [CrossRef] [PubMed]
[13] Alizad, A., Whaley, D.H., Urban, M.W., et al. (2012) Breast Vibro-Acoustography: Initial Results Show Promise. Breast Cancer Research, 14, R128. [Google Scholar] [CrossRef] [PubMed]
[14] Alizad, A., Mehrmohammadi, M., Ghosh, K., et al. (2014) Breast Vibro-Acoustography: Initial Experience in Benign Lesions. BMC Medical Imaging, 14, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
[15] Mehrmohammadi, M., Fazzio, R.T., Whaley, D.H., et al. (2014) Preliminary in Vivo Breast Vibro-Acoustography Results with a Quasi-2-D Array Transducer: A Step Forward. Ultra-sound in Medicine and Biology, 40, 2819-2829. [Google Scholar] [CrossRef] [PubMed]
[16] Alizad, A., Urban, M.W., Morris, J.C., et al. (2013) In Vivo Thyroid Vibro-Acoustography: A Pilot Study. BMC Medical Imaging, 13, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
[17] Mitri, F.G., Davis, B.J., Greenleaf, J.F., et al. (2009) In Vitro Comparative Study of Vibro-Acoustography versus Pulse-Echo Ultrasound in Imaging Permanent Prostate Brachytherapy Seeds. Ultrasonics, 49, 31-38. [Google Scholar] [CrossRef] [PubMed]
[18] Mitri, F.G., Davis, B.J., Urban, M.W., et al. (2009) Vibro-Acoustography Imaging of Permanent Prostate Brachytherapy Seeds in an Excised Human Prostate—Preliminary Results and Technical Feasibility. Ultrasonics, 49, 389-394. [Google Scholar] [CrossRef] [PubMed]
[19] Mehrmohammadi, M., Alizad, A., Kinnick, R.R., et al. (2014) Feasibility of Vibro-Acoustography with a Quasi-2D Ultrasound Array Transducer for Detection and Localizing of Permanent Prostate Brachytherapy Seeds: A Pilot ex Vivo Study. Medical Physics, 41, Article ID: 092902. [Google Scholar] [CrossRef] [PubMed]
[20] Alizad, A., Mehrmohammadi, M., Mitri, F.G., et al. (2013) Application of Vibro-Acoustography in Prostate Tissue Imaging. Medical Physics, 40, Article ID: 022902. [Google Scholar] [CrossRef] [PubMed]
[21] Calle, S., Remenieras, J.P., Matar, O.B., et al. (2003) Application of Non-linear Phenomena Induced by Focused Ultrasound to Bone Imaging. Ultrasound in Medicine and Biology, 29, 465-472. [Google Scholar] [CrossRef
[22] Nogueirabarbosa, M.H., Kamimura, H.A., Braz, G., et al. (2017) Preliminary Results of Vibro-Acoustography Evaluation of Bone Surface and Bone Fracture. Quantitative Im-aging in Medicine and Surgery, 7, 549-554. [Google Scholar] [CrossRef] [PubMed]
[23] Belohlavek, M., Asanuma, T., Kinnick, R.R., et al. (2001) Vibro-Acoustography: Quantification of Flow with Highly-Localized Low-Frequency Acoustic Force. Ultrasonic Im-aging, 23, 249-256. [Google Scholar] [CrossRef] [PubMed]
[24] Chen, S., Kinnick, R.R., Greenleaf, J.F., et al. (2006) Differ-ence Frequency and Its Harmonic Emitted by Microbubbles under Dual Frequency Excitation. Ultrasonics, 44, e123-e126. [Google Scholar] [CrossRef] [PubMed]
[25] Chen, S., Kinnick, R.R., Greenlcaf, J.F., et al. (2007) Harmonic Vibro-Acoustography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 54, 1346-1351. [Google Scholar] [CrossRef
[26] Alizad, A., Wold, L.E., Greenleaf, J.F., et al. (2004) Imaging Mass Lesions by Vibro-Acoustography: Modeling and Experiments. IEEE Transactions on Medical Imaging, 23, 1087-1093. [Google Scholar] [CrossRef
[27] Kamimura, H.A., Fagundes, M.A., Fatemi, M., et al. (2011) Vibro-Acoustography and B-Mode Integration for 3D Imaging. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, 30 August-3 September 2011, 421-424. [Google Scholar] [CrossRef
[28] Yamamoto, N., Kinnick, R.R., Fatemi, M., et al. (2015) Di-agnosis of Small Partial-Thickness Rotator Cuff Tears Using Vibro-Acoustography. Journal of Medical Ultrasonics, 42, 3-7. [Google Scholar] [CrossRef] [PubMed]
[29] Suarez, M.W., Dever, D.D., Gu, X., et al. (2015) Transcranial Vibro-Acoustography Can Detect Traumatic Brain Injury, In-Vivo: Preliminary Studies. Ultrasonics, 61, 151-156. [Google Scholar] [CrossRef] [PubMed]
[30] Pellionisz, P.A., Namiri, N.K., Suematsu, G., et al. (2018) Vibroacoustographic System for Tumor Identification. The Yale Journal of Biology and Medicine, 91, 215-223.
[31] 曾锦晖. 高频环阵换能器数字波束聚焦技术[D]: [硕士学位论文]. 北京: 中国协和医科大学, 2007.
[32] Urban, M.W., Chalek, C.L., Haider, B.H., et al. (2013) A Beamforming Study for Implementation of Vibro-Acoustography with a 1.75-D Array Transducer. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 60, 535-551. [Google Scholar] [CrossRef
[33] Kamimura, H.A., Urban, M.W., Carneiro, A.A., et al. (2012) Vibro-Acoustography Beam Formation with Reconfigurable Arrays. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 59, 1421-1431. [Google Scholar] [CrossRef
[34] De Medeiros, L.J., Kamimura, H.A., Altafim, R.A., et al. (2015) Piezoelectret-Based Hydrophone: An Alternative Device for Vibro-Acoustography. Measurement Science and Tech-nology, 26, Article ID: 095102. [Google Scholar] [CrossRef
[35] Mitri, F.G., Greenleaf, J.F., Fatemi, M., et al. (2005) Chirp Imaging Vibro-Acoustography for Removing the Ultrasound Standing Wave Artifact. IEEE Transactions on Medical Imaging, 24, 1249-1255. [Google Scholar] [CrossRef
[36] Urban, M.W., Silva, G.T., Fatemi, M., et al. (2006) Multifrequency Vibro-Acoustography. IEEE Transactions on Medical Imaging, 25, 1284-1295. [Google Scholar] [CrossRef
[37] Urban, M.W., Alizad, A., Fatemi, M., et al. (2011) Vibro-Acoustography and Multifrequency Image Compounding. Ultrasonics, 51, 689-696. [Google Scholar] [CrossRef] [PubMed]
[38] Urban, M.W., Wang, C., Alizad, A., et al. (2015) Complex Background Suppression for Vibro-Acoustography Images. Ultrasonics, 56, 456-472. [Google Scholar] [CrossRef] [PubMed]
[39] Perciano, T., Urban, M.W., Mascarenhas, N.D., et al. (2013) Deconvolution of Vibroacoustic Images Using a Simulation Model Based on a Three Dimensional Point Spread Function. Ultrasonics, 53, 36-44. [Google Scholar] [CrossRef] [PubMed]
[40] Almeida, T.W., Kamimura, H.A., Carneiro, A.A., et al. (2010) A New Apparatus for Analysis of Viscoelastic Fluids by Ultrasound Radiation Force. 2010 Annual International Con-ference of the IEEE Engineering in Medicine and Biology, Buenos Aires, 31 August-4 September 2010, 182-185. [Google Scholar] [CrossRef
[41] Maccabi, A., Arshi, A., Garritano, J., et al. (2014) Ultra-sound-Stimulated Vibro-Acoustography for High-Resolution Differentiation Based on Viscoelastic Properties of Tissue Mimicking Phantoms. Studies in Health Technology and Informatics, 196, 262-264.
[42] Konofagou, E.E., Thierman, J., Karjalainen, T., et al. (2002) the Temperature Dependence of Ultrasound-Stimulated Acoustic Emission. Ultrasound in Medicine and Biology, 28, 331-338. [Google Scholar] [CrossRef
[43] Konofagou, E.E., Thierman, J., Hynynen, K., et al. (2003) The Use of Ultrasound-Stimulated Acoustic Emission in the Monitoring of Modulus Changes with Temperature. Ultrasonics, 41, 337-345. [Google Scholar] [CrossRef
[44] Chen, S., Aquino, W., Alizad, A., et al. (2010) Thermal Safety of Vibro-Acoustography Using a Confocal Transducer. Ultrasound in Medicine and Biology, 36, 343-349. [Google Scholar] [CrossRef] [PubMed]
[45] Hsiao, Y., Kuo, S., Tsai, H., et al. (2016) Clinical Ap-plication of High-Intensity Focused Ultrasound in Cancer Therapy. Journal of Cancer, 7, 225-231. [Google Scholar] [CrossRef] [PubMed]
[46] Wang, Q., Guo, R., Rong, S., et al. (2013) Noninvasive Renal Sympathetic Denervation by Extracorporeal High-Intensity Focused Ultrasound in a Pre-Clinical Canine Model. Journal of the American College of Cardiology, 61, 2185-2192. [Google Scholar] [CrossRef] [PubMed]
[47] Davies, E.J., Bazerbashi, S., Asopa, S., et al. (2014) Long-Term Outcomes Following High Intensity Focused Ultrasound Ablation for Atrial Fibrillation. Journal of Cardiac Surgery, 29, 101-107. [Google Scholar] [CrossRef] [PubMed]
[48] Sugimoto, T., Ueha, S., Itoh, K., et al. (1990) Tissue Hardness Measurement Using the Radiation Force of Focused Ultrasound. IEEE Symposium on Ultrasonics, Honolulu, 4-7 December 1990, 1377-1380. [Google Scholar] [CrossRef
[49] Landhuis, E. (2017) Ultrasound for the Brain. Nature, 551, 257-259. [Google Scholar] [CrossRef] [PubMed]