|
[1]
|
Ma, J., Wang, Y., Wei, P. and Jhanji, V. (2018) Biomechanics and Structure of the Cornea: Implications and Association with Corneal Disorders. Survey of Ophthalmology, 63, 851-861. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tubtimthong, A., Chansangpetch, S., Ratprasatporn, N., Manassakorn, A., Tantisevi, V., Rojanapongpun, P., et al. (2020) Comparison of Corneal Biomechanical Properties among Axial Myopic, Nonaxial Myopic, and Nonmyopic Eyes. BioMed Research International, 2020, Article ID: 8618615. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Brazuna, R., Alonso, R.S., Salomão, M.Q., Fernandes, B.F. and Ambrósio, R. (2023) Ocular Biomechanics and Glaucoma. Vision (Basel), 7, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liu, M.X., Zhou, M., Li, D.L., Dong, X.X., Liang, G. and Pan, C.W. (2023) Corneal Biomechanics in Primary Open Angle Glaucoma and Ocular Hypertension: A Systematic Review and Meta-Analysis. Journal of Glaucoma, 32, E24-E32. [Google Scholar] [CrossRef]
|
|
[5]
|
Sit, A.J., Chen, T.C., Takusagawa, H.L., Rosdahl, J.A., Hoguet, A., Chopra, V., et al. (2023) Corneal Hysteresis for the Diagnosis of Glaucoma and Assessment of Progression Risk: A Report by the American Academy of Ophthalmology. Ophthalmology, 130, 433-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Padmanabhan, P. and Elsheikh, A. (2023) Keratoconus: A Bio-mechanical Perspective. Current Eye Research, 48, 121-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Elsheikh, A., Joda, A., Abass, A. and Garway-Heath, D. (2015) Assessment of the Ocular Response Analyzer as an Instrument for Measurement of Intraocular Pressure and Corneal Biomechanics. Current Eye Research, 40, 1111-1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Terai, N., Raiskup, F., Haustein, M., Pillunat, L.E. and Spoerl, E. (2012) Identification of Biomechanical Properties of the Cornea: The Ocular Response Analyzer. Current Eye Re-search, 37, 553-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lanza, M., Cennamo, M., Iaccarino, S., Romano, V., Bifani, M., Irregolare, C., et al. (2015) Evaluation of Corneal Deformation Analyzed with a Scheimpflug Based Device. Contact Lens and Anterior Eye, 38, 89-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, K., Xu, L., Fan, Q., Zhao, D. and Ren, S. (2019) Repeatabil-ity and Comparison of New Corvis ST Parameters in Normal and Keratoconus Eyes. Scientific Reports, 9, Article No. 15379. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Leung, C.K., Ye, C. and Weinreb, R.N. (2013) An Ul-tra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measure-ment. Investigative Ophthalmology & Visual Science, 54, 2885-2892. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
El Massry, A.A.K., Said, A.A., Osman, I.M., Bessa, A.S., Elmasry, M.A., Elsayed, E.N., et al. (2020) Corneal Biomechanics in Different Age Groups. International Ophthalmology, 40, 967-974. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, H., Qin, X., Cao, X., Zhang, D. and Li, L. (2017) Age-Related Variations of Rabbit Corneal Geometrical and Clinical Biomechanical Parameters. BioMed Research Inter-national, 2017, Article ID: 3684971. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Blackburn, B.J., Jenkins, M.W., Rollins, A.M. and Dupps, W.J. (2019) A Review of Structural and Biomechanical Changes in the Cornea in Aging, Disease, and Photochemical Crosslinking. Frontiers in Bioengineering and Biotechnology, 7, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, X., Xu, G., Wang, W., Wang, J., Chen, L., He, M., et al. (2020) Changes in Corneal Biomechanics in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Acta Diabetologica, 57, 973-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, B., Shweikh, Y., Khawaja, A.P., Gallacher, J., Bau-ermeister, S. and Foster, P.J. (2019) Associations with Corneal Hysteresis in a Population Cohort: Results from 96010 UK Biobank Participants. Ophthalmology, 126, 1500-1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ramm, L., Herber, R., Spoerl, E., Pillunat, L.E. and Terai, N. (2019) Measurement of Corneal Biomechanical Properties in Diabetes Mellitus Using the Ocular Response Analyzer and the Corvis ST. Cornea, 38, 595-599. [Google Scholar] [CrossRef]
|
|
[18]
|
Suzuki, T., Kinoshita, Y., Tachibana, M., Matsushima, Y., Kobayashi, Y., Adachi, W., et al. (2001) Expression of Sex Steroid Hormone Receptors in Human Cornea. Current Eye Research, 22, 28-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Walter, E., Matlov Kormas, R., Marcovich, A.L., Lior, Y., Sui, X., Wagner, D., et al. (2019) The Effect of Estrogen and Progesterone on Porcine Corneal Biomechanical Properties. Grae-fe’s Archive for Clinical and Experimental Ophthalmology, 257, 2691-2695. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Spoerl, E., Zubaty, V., Raiskup-Wolf, F. and Pillunat, L.E. (2007) Oestrogen-Induced Changes in Biomechanics in the Cornea as a Possible Reason for Keratectasia. British Journal Oph-thalmology, 91, 1547-1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bahadir Kilavuzoglu, A.E., Cosar, C.B., Bildirici, I., Cetin, O. and Ozbasli, E. (2018) Estrogen- and Progesterone-Induced Variation in Corneal Parameters According to Hormonal Status. Eye & Contact Lens, 44, S179-S184. [Google Scholar] [CrossRef]
|
|
[22]
|
Goldich, Y., Barkana, Y., Pras, E., Fish, A., Mandel, Y., Hirsh, A., et al. (2011) Variations in Corneal Biomechanical Parameters and Central Corneal Thickness during the Men-strual Cycle. Journal of Cataract & Refractive Surgery, 37, 1507-1511. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Seymenoğlu, G., Baser, E.F., Zerdeci, N. and Gülhan, C. (2011) Corneal Biomechanical Properties during the Menstrual Cycle. Current Eye Research, 36, 399-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Huang, T.Z. and Jin, H.Y. (2022) Case Report: Bilateral Cor-neal Ectasia Developed during Pregnancy after Small-Incision Lenticule Extraction. Optometry and Vision Science, 99, 528-533. [Google Scholar] [CrossRef]
|
|
[25]
|
Soeters, N., Tahzib, N.G., Bakker, L. and Van Der Lelij, A. (2012) Two Cases of Keratoconus Diagnosed after Pregnancy. Optometry and Vision Science, 89, 112-116. [Google Scholar] [CrossRef]
|
|
[26]
|
Bilgihan, K., Hondur, A., Sul, S. and Ozturk, S. (2011) Pregnancy-Induced Progression of Keratoconus. Cornea, 30, 991-994. [Google Scholar] [CrossRef]
|
|
[27]
|
Bujor, I.A., Iancu, R.C., Istrate, S.L., Ungureanu, E. and Iancu, G. (2021) Corneal Biomechanical Changes in Third Trimester of Pregnancy. Medicina (Kaunas), 57, Article No. 600. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, T., Ye, H., Xiao, W., Chen, R. and Huasheng, Y. (2023) Corneal Morphological and Biomechanical Changes in Thyroid-Associated Ophthalmopathy. Cornea. [Google Scholar] [CrossRef]
|
|
[29]
|
Comert, M.C., Yilmaz, S., Tas, A.Y. and Sahin, A. (2022) The Effect of Thyroid Eye Disease on Corneal Biomechanical Properties. Beyoglu Eye Journal, 7, 193-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yazici, A.T., Kara, N., Yüksel, K., Altinkaynak, H., Baz, O., Bozkurt, E., et al. (2011) The Biomechanical Properties of the Cornea in Patients with Systemic Lupus Erythematosus. Eye (Lon-don), 25, 1005-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Borrego-Sanz, L., Sáenz-Francés, San Baldomero, F., Díaz Valle, D., Santos Bueso, E., Sánchez Jean, R., Martínez De La Casa, J.M., et al. (2018) Comparison of Corneal Biomechanical Properties of Patients with Dry Eye Secondary to Sjögren’s Syndrome and Healthy Subjects. Journal Français d’Ophtalmologie, 41, 802-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Long, Q., Wang, J.Y., Xu, D. and Li, Y. (2017) Comparison of Corneal Biomechanics in Sjögren’s Syndrome and Non-Sjögren’s Syndrome Dry Eyes by Scheimpflug Based Device. International Journal of Ophthalmology, 10, 711-716.
|
|
[33]
|
Nossair, A.A., Kassem, M.K., Eltanamly, R.M. and Alah-madawy, Y.A. (2021) Corneal Hysteresis, Central Corneal Thickness, and Intraocular Pressure in Rheumatoid Arthritis, and Their Relation to Disease Activity. Middle East African Journal of Ophthalmology, 28, 174-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rolvien, T., Kornak, U., Linke, S.J., Amling, M. and Oheim, R. (2020) Whole-Exome Sequencing Identifies Novel Compound Heterozygous ZNF469 Mutations in Two Siblings with Mild Brittle Cornea Syndrome. Calcified Tissue International, 107, 294-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chou, C.C., Shih, P.J., Jou, T.S., Hsu, M.Y., Chen, J.P., Hsu, R.H., et al. (2023) Corneal Biomechanical Characteristics in Osteogenesis Imperfecta with Collagen Defect. Translation-al Vision Science & Technology, 12, 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wasielica-Poslednik, J., Schuster, A.K., Politino, G., Marx-Gross, S., Bell, K., Pfeiffer, N., et al. (2019) Corneal Topometric, Aberrometric and Biomechanical Parameters in Mucopolysaccharidosis Patients. PLOS ONE, 14, e0218108. [Google Scholar] [CrossRef] [PubMed]
|