|
[1]
|
Li, X., Zhou, Q., Wu, Y., et al. (2022) Enhanced Bone Regenerative Properties of Calcium Phosphate Ceramic Granules in Rabbit Posterolateral Spinal Fusion through a Reduction of Grain Size. Bioactive Materials, 11, 90-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lima, F.B., Pereira, R.S., Junior, S.M.L., et al. (2017) Pro-spective Randomised Clinical Trial Using Autogenous Bone or Beta-Tricalcium Phosphate in Maxillary Sinus Lifting: Histological and Tomographic Results. International Journal of Oral and Maxillofacial Surgery, 46, 266. [Google Scholar] [CrossRef]
|
|
[3]
|
Bouler, J.M., Pilet, P., Gauthier, O., et al. (2017) Biphasic Calcium Phosphate Ceramics for Bone Reconstruction: A Review of Biological Response. Acta Biomaterialia, 53, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ebrahimi, M. and Botelho, M. (2017) Biphasic Calcium Phos-phates (BCP) of Hydroxyapatite (HA) and Tricalcium Phosphate (TCP) as Bone Substitutes: Importance of Physico-chemical Characterizations in Biomaterials Studies. Data in Brief, 10, 93-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kim, S.E. and Park, K. (2020) Recent Advances of Biphasic Calci-um Phosphate Bioceramics for Bone Tissue Regeneration. In: Chun, H., Reis, R., Motta, A. and Khang, G., Eds., Bio-mimicked Biomaterials: Advances in Tissue Engineering and Regenerative Medicine, Springer, Singapore, 177-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
沈红裕, 宋珂. 双相磷酸钙陶瓷在口腔种植的应用及研究进展[J]. 口腔医学研究, 2022, 38(5): 404-407.
|
|
[7]
|
Bouwman, W.F., Bravenboer, N., Ten Bruggenkate, C.M., et al. (2021) Tissue Level Changes after Maxillary Sinus Floor Elevation with Three Types of Calcium Phosphate Ceramics: A Radiological Study with a 5-Year Follow-Up. Materials, 14, Article 1471. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cha, J.K., Kim, C., Pae, H.C., et al. (2019) Maxillary Sinus Augmenta-tion Using Biphasic Calcium Phosphate: Dimensional Stability Results after 3 - 6 Years. Journal of Periodontal & Im-plant Science, 49, 47-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ballouze, R., Marahat, M.H., Mohamad, S., et al. (2021) Biocom-patible Magnesium-Doped Biphasic Calcium Phosphate for Bone Regeneration. Journal of Biomedical Materials Re-search Part B: Applied Biomaterials, 109, 1426-1435. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Padmanabhan, V.P., Sivashanmugam, P., Kulandaivelu, R., et al. (2022) Biosynthesised Silver Nanoparticles Loading Onto Biphasic Calcium Phosphate for Antibacterial and Bone Tissue Engi-neering Applications. Antibiotics, 11, Article 1780. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yoo, K.H., Kim, Y., Kim, Y.I., et al. (2022) Lithium Doped Biphasic Calcium Phosphate: Structural Analysis and Os-teo/Odontogenic Potential in Vitro. Frontiers in Bioengineering and Biotechnology, 10, Article 993126. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Da Costa, K.J.R., Gala-García, A., Passos, J.J., et al. (2019) Tes-tosterone Improves the Osteogenic Potential of a Composite in Vitro and in Vivo. Cell and Tissue Research, 376, 221-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Choi, J.B., Kim, Y.K., Byeon, S.M., et al. (2021) Fabrication and Characterization of Biodegradable Gelatin Methacrylate/Biphasic Calcium Phosphate Composite Hydrogel for Bone Tis-sue Engineering. Nanomaterials, 11, Article 617. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Titsinides, S., Agrogiannis, G. and Karatzas, T. (2019) Bone Grafting Materials in Dentoalveolar Reconstruction: A Comprehensive Review. Japanese Dental Science Review, 55, 26-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Andrli, M., Tomas, M., Karl, M., et al. (2022) Comparison of In-jectable Biphasic Calcium Phosphate and a Bovine Xenograft in Socket Preservation: Qualitative and Quantitative Histo-logic Study in Humans. International Journal of Molecular Sciences, 23, Article 2539. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Klimecs, V., Grishulonoks, A., Salma, I., et al. (2018) Bone Loss around Dental Implants 5 Years after Implantation of Biphasic Calcium Phosphate (HAp/β-TCP) Granules. Journal of Healthcare Engineering, 2018, Article ID: 4804902. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Olaechea, A., Mendoza-Azpur, G., et al. (2019) Biphasic Hydroxyap-atite and β-Tricalcium Phosphate Biomaterial Behavior in a Case Series of Maxillary Sinus Augmentation in Humans. Clinical Oral Implants Research, 30, 336-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Toledano-Serrabona, J., Romeu-I-Fontanet, A., Gay-Escoda, C., et al. (2021) Clinical and Histological Outcomes of Maxillary Sinus Floor Augmentation with Synthetic Bone Substitutes for Dental Implant Treatment: A Meta-Analysis. Journal of Oral Implantology, 48, 158-167. [Google Scholar] [CrossRef]
|
|
[19]
|
林奕真. 双相磷酸钙(BCP)结合重组人骨形态发生蛋白-2 (RhBMP2)成骨性能的研究&病例报告[D]: [博士学位论文]. 武汉: 武汉大学, 2018.
|
|
[20]
|
Fadeeva, I.V., Deyneko, D.V., Forysenkova, A.A., et al. (2022) Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Proper-ties and Cytocompatibility. Molecules (Basel, Switzerland), 27, Article 6085. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ito, Y., Kato, H., Umetsu, M., et al. (2023) Preparation and Eval-uation of Cements Using Spherical Porous β-Tricalcium Phosphate Granules. Journal of the Japan Society of Powder and Powder Metallurgy, 70, 242-247. [Google Scholar] [CrossRef]
|
|
[22]
|
Ortiz, C.H., Caicedo, J.C. and Aperador, W. (2022) Physical Properties Evolution of β-Tricalcium Phosphate/Hydroxyapatite Heterostructures in Relation to the Bilayer Number. Thin Solid Films, 752, Article 139256. [Google Scholar] [CrossRef]
|
|
[23]
|
Fu, Q., Guo, Z., Bo, D., et al. (2023) Multi-Drug Delivery and Os-teogenic Performance of β-Tricalcium Phosphate/ Alginate Composite Microspheres. International Journal of Polymeric Materials and Polymeric Biomaterials.
|
|
[24]
|
Malherbi, M.S., Dias, L.C., Lima, M.S.Z., et al. (2022) Electrically Stimu-lated Bioactivity in Hydroxyapatite/ β-Tricalcium Phosphate/Polyvinylidene Fluoride Biocomposites. Journal of Materi-als Research and Technology, 20, 169-179. [Google Scholar] [CrossRef]
|
|
[25]
|
Tanaka, T., Komaki, H., Kumagae, Y., et al. (2022) Repair of Large Bone Defects Using Beta-Tricalcium Phosphate. Biomedical Journal of Sci-entific & Technical Research, 44, 5457-35463. [Google Scholar] [CrossRef]
|
|
[26]
|
陈凯歌, 陈仁吉, 郭思远, 等. 人工骨材料β-磷酸三钙在牙槽嵴裂骨缺损修复中的应用[J]. 口腔疾病防治, 2023, 31(4): 252-256.
|
|
[27]
|
Stipniece, L., Skadins, I. and Mosina, M. (2022) Silver- and/or Titanium-Doped β-Tricalcium Phosphate Bioceramic with Antibacterial Activity against Staph-ylococcus aureus. Ceramics International, 48, 10195-10201. [Google Scholar] [CrossRef]
|
|
[28]
|
Wang, Y., Yuan, X. and Ye, J. (2022) Effects of Zinc/Gallium Dual Doping on the Physicochemical Properties and Cell Response of 3D Printed β-Tricalcium Phosphate Ceramic Scaf-folds. Ceramics International, 48, 28557-28564. [Google Scholar] [CrossRef]
|
|
[29]
|
Bi, G., Mo, L., Liu, S., et al. (2022) DLP Printed β-Tricalcium Phosphate Functionalized Ceramic Scaffolds Promoted Angiogenesis and Osteogenesis in Long Bone Defects. Ceramics International, 48, 26274-26286. [Google Scholar] [CrossRef]
|
|
[30]
|
Putri, T.S., Ratnasari, A., Sofiyaningsih, N., et al. (2022) Me-chanical Improvement of Chitosan-Gelatin Scaffolds Reinforced by β-Tricalcium Phosphate Bioceramic. Ceramics In-ternational, 48, 11428-11434. [Google Scholar] [CrossRef]
|
|
[31]
|
Kim, H.Y., Kim, B.H. and Kim, M.S. (2022) Amine Plas-ma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation in Vitro. Materials, 15, Article 366. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jing, T., Liu, Y., Xu, L., et al. (2022) The Incorporation of β-Tricalcium Phosphate Nanoparticles within Silk Fibroin Composite Scaffolds for Enhanced Bone Regeneration: An in Vitro and in Vivo Study. Journal of Biomaterials Applications, 36, 1567-1578. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, Y., Wu, H., Bao, S., et al. (2023) Clinical Application of 3D-Printed Biodegradable Lumbar Interbody Cage (Polycaprolactone/β-Tricalcium Phosphate) for Posterior Lumbar In-terbody Fusion. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 111, 1398-1406. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Putri, T.S., Sunarso., Hayashi, K., et al. (2022) Feasibility Study on Sur-face Morphology Regulation of β-Tricalcium Phosphate Bone Graft for Enhancing Cellular Response. Ceramics Interna-tional, 48, 13395-13399. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhou, J., Sun, S., He, Y., et al. (2022) Role of Magnesi-um-Doped Calcium Sulfate and β-Tricalcium Phosphate Composite Ceramics in Macrophage Polarization and Os-teo-Induction. Odontology, 110, 735-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ningsih, H.S., Tannesia, L., Animut, T.Y., et al. (2022) Charac-terization of Mesoporous in β-Tricalcium Phosphate Using Electron Microscopy. Journal of the Australian Ceramic So-ciety, 58, 1445-1454. [Google Scholar] [CrossRef]
|
|
[37]
|
Xu, Z., Sun, Y., Dai, H., et al. (2022) Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model. Molecules (Basel, Switzerland), 27, Article 4535. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Nakagawa, S., Okada, R., Kushioka, J., et al. (2022) Effects of rhBMP-2-Loaded Hydroxyapatitegranules/Beta-Tricalcium Phosphate Hydrogel (HA/β-TCP/Hydrogel) Composite on a Rat Model of Caudal Intervertebral Fusion. Scientific Reports, 12, Article No. 7906. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
金合, 李晋玉, 俞兴, 等. 可注射骨修复材料结合骨碎补总黄酮修复极量颅骨缺损的实验研究[J]. 生物骨科材料与临床研究, 2012, 9(1): 26-29.
|
|
[40]
|
Hallmann, L. and Gerngro, M.D. (2022) Chitosan and Its Application in Dental Implantology. Journal of Stomatology, Oral and Maxillo-facial Surgery, 123, e701-e707. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Canas, E., Orts, M.J., Sanchez, E., et al. (2022) Deposition of Bioactive Glass Coatings Based on a Novel Composition Containing Strontium and Mag-nesium. Journal of the European Ceramic Society, 42, 6213-6221. [Google Scholar] [CrossRef]
|
|
[42]
|
Rahnejat, B., Hassanzadeh, N.N., Sadrnezhaad, S.K., et al. (2023) Promoting Osteoblast Proliferation and Differentiation on Functionalized and Laser Treated Titanium Substrate Using Hydroxyapatite/β-Tricalcium Phosphate/Silver Nanoparticles. Materials Chemistry and Physics, 293, Article 126885. [Google Scholar] [CrossRef]
|
|
[43]
|
Sharma, A., Emery, R.J.H., Pitsillides, A.A., et al. (2022) OC10: RAMAN Spectroscopy Exposes Sex-Specific Bone Matrix Signatures Coupled to Pro-Angiogenic Vascular Phenotypes. Microcirculation, 29, e12739.
|
|
[44]
|
Xue, Z., Wang, X. and Xu, D. (2022) Molecular Investigations of the Prenucleation Mechanism of Bone-Like Apatite Assisted by Type I Collagen Nanofibrils: Insights Into Intrafibrillar Mineralization. Physical Chemistry Chemical Physics, 24, 18931-18942. [Google Scholar] [CrossRef]
|
|
[45]
|
Silambarasan, I. and Rajalakshmi, A.N. (2022) A Review on Freeze-Drying: A Stability Enhancement Technique. Research Journal of Pharmacy and Technology, 15, 4841-4846.
|
|
[46]
|
Boonsirikamchai, W., Phisalprapa, P., Kositamongkol, C., et al. (2023) An Effectiveness and Eco-nomic Analyses of Tricalcium Phosphate Combined with Iliac Bone Graft versus RhBMP-2 in Single-Level XLIF Sur-gery in Thailand. BMC Musculoskeletal Disorders, 24, Article No. 503. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Maruyama, K., Cheng, J., Ishii, H., et al. (2022) Activation of NLRP3 Inflammasome Complexes by Beta-Tricalcium Phosphate Particles and Stimulation of Immune Cell Migration in Vivo. Journal of Innate Immunity, 14, 207-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, Y., Yan, M., Niu, W., et al. (2022) Tricalcium Phosphate Particles Promote Pyroptotic Death of Calvaria Osteocytes through the ROS/NLRP3/Caspase-1 Signaling Axis in Amouse Oste-olysis Model. International Immunopharmacology, 107, Article 108699. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ali, A., Hasan, A. and Negi, Y.S. (2022) Effect of Cellulose Nanocrystals on Xylan/Chitosan/Nanoβ-TCP Composite Matrix for Bone Tissue Engineering. Cellulose, 29, 5689-5709. [Google Scholar] [CrossRef]
|
|
[50]
|
Funayama, T., Noguchi, H., Shibao, Y., et al. (2023) Unidirec-tional Porous Beta-Tricalcium Phosphate as a Potential Bone Regeneration Material for Infectious Bony Cavity without Debridement in Pyogenic Spondylitis. Journal of Artificial Organs, 26, 89-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Jing, T., Liu, Y., Xu, L., et al. (2022) The Incorporation of Be-ta-Tricalcium Phosphate Nanoparticles Within Silk Fibroin Composite Scaffolds for Enhanced Bone Regeneration: An in Vitro and in Vivo Study. Journal of Biomaterials Applications, 36, 1567-1578. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kabilan, N., Karthikeyan, N., Dinesh Babu, K., et al. (2023) Third-Order Nonlinear Optical Properties of Mono and Biphasic Beta-Tricalcium Phosphate in Continuous Wave Regime. Journal of Materials Science: Materials in Electronics, 34, Article No. 885. [Google Scholar] [CrossRef]
|
|
[53]
|
Eldeeb, D.W., Hommos, A.M., Taalab, M.R., et al. (2023) Im-muno-Histologic and Histomorphometric Evaluation of Angelica Sinensis Adjunctive to β-Tricalcium Phosphate in Criti-cal-Sized Class II Furcation Defects in Dogs. BDJ Open, 9, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Kim, S.M., Yoo, K.H., Kim, H., et al. (2022) Simultaneous Sub-stitution of Fe and Sr in Beta-Tricalcium Phosphate: Synthesis, Structural, Magnetic, Degradation, and Cell Adhesion Properties. Materials, 15, Article 4702. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Alves, A.P.N., Arango-Ospina, M., Oliveira, R.L.M.S., et al. (2023) 3D-Printed β-TCP/S53P4 Bioactive Glass Scaffolds Coated with Tea Tree Oil: Coating Optimization, in Vitro Bioactivity and Antibacterial Properties. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 111, 881-894. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Sundar, R., Rai, A., Jayakumar, N., et al. (2022) Calvarial Bone Defect Regeneration Using Beta-Tricalcium Phosphate: A Translational Research Study in Rat Animal Model. International Journal of Research in Medical Sciences, 10, 2420-2426. [Google Scholar] [CrossRef]
|
|
[57]
|
Autefage, H., Briand-Mésange, F., Cazalbou, S., et al. (2009) Adsorption and Release of BMP-2 on Nanocrystalline Apatite-Coated and Uncoated Hydroxyapatite/β-Tricalcium Phosphate Porous Ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B, 706-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, Z., Liu, D., Chen, Z., et al. (2022) Fabrication, in Vitro and in Vivo Properties of β-TCP/Zn Composites. Journal of Alloys and Compounds, 913, Article 165223. [Google Scholar] [CrossRef]
|
|
[59]
|
Qiu, X., Li, S., Li, X., et al. (2022) Experimental Study of β-TCP Scaffold Loaded with VAN/PLGA Microspheres in the Treatment of Infectious Bone Defects. Colloids and Sur-faces, B. Biointerfaces, 213, Article 112424. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
王婧. 3D打印载淫羊藿苷的PVA/β-TCP复合支架成血管性能的研究[D]: [硕士学位论文]. 长春: 吉林大学, 2022.
|
|
[61]
|
Zhang, J., Wu, Q., Yin, C., et al. (2021) Sustained Calcium Ion Release from Bioceramics Promotes CaSR-Mediated M2 Macrophage Polarization for Osteoinduction. Journal of Leukocyte Biology, 110, 485-496. [Google Scholar] [CrossRef]
|
|
[62]
|
Tabrizi, R., Sadeghi, H.M., Ghasemi, K., et al. (2022) Does Biphasic Calcium Phosphate-Coated Surface Increase the Secondary Stability in Dental Implants? A Split-Mouth Study. Journal of Maxillofacial and Oral Surgery, 21, 557-561. [Google Scholar] [CrossRef] [PubMed]
|