|
[1]
|
Zabala Ramirez, M.J., Stein, E.J. and Jain, K. (2023) Nephrotic Syndrome for the Internist. Medical Clinics of North America, 107, 727-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ronco, P. and Debiec, H. (2017) A Po-docyte View of Membranous Nephropathy: From Heymann Nephritis to the Childhood Human Disease. Pflügers Ar-chiv—European Journal of Physiology, 469, 997-1005. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dantas, M., Silva, L.B.B., Pontes, B.T.M., et al. (2023) Mem-branous Nephropathy. Brazilian Journal of Nephrology, 45, 229-243. [Google Scholar] [CrossRef]
|
|
[4]
|
Ronco, P. and Debiec, H. (2015) Pathophysiological Advances in Membranous Nephropathy: Time for a Shift in Patient’s Care. Lancet, 385, 1983-1992. [Google Scholar] [CrossRef]
|
|
[5]
|
Starzynska-Kubicka, A., Perkowska-Ptasinska, A. and Gor-nicka, B. (2018) Membranous Glomerulonephritis—A Common, Unspecific Pattern of Glomerular Injury. Polish Jour-nal of Pathology, 69, 209-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Polanco, N., Gutiérrez, E., Covarsí, A., et al. (2010) Spontaneous Remission of Nephrotic Syndrome in Idiopathic Membranous Nephropathy. Journal of the American Society of Neph-rology, 21, 697-704. [Google Scholar] [CrossRef]
|
|
[7]
|
MacTier, R., Boulton Jones, J.M., Payton, C.D., et al. (1986) The Natural History of Membranous Nephropathy in the West of Scotland. Quarterly Journal of Medicine, 60, 793-802.
|
|
[8]
|
Cattran, D.C., Kim, E.D., Reich, H., et al. (2017) Membranous Nephropathy: Quantifying Remission Duration on Outcome. Journal of the American Society of Nephrology, 28, 995-1003. [Google Scholar] [CrossRef]
|
|
[9]
|
Glassock, R.J. (2021) Membranous Nephropathy: Classification Redux? Mayo Clinic Proceedings, 96, 523-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Alsharhan, L. and Beck Jr., L.H. (2021) Membranous Nephropathy: Core Curriculum 2021. American Journal of Kidney Diseases, 77, 440-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Safar-Boueri, L., Piya, A., Beck Jr., L.H., et al. (2021) Membra-nous Nephropathy: Diagnosis, Treatment, and Monitoring in the Post-PLA2R Era. Pediatric Nephrology, 36, 19-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pozdzik, A., Touzani, F., Brocheriou, I. and Corazza, F. (2019) Molecular Classification of Membranous Nephropathy. Current Opinion in Nephrology and Hypertension, 28, 336-344. [Google Scholar] [CrossRef]
|
|
[13]
|
Adler, S.G., Wang, H., Ward, H.J., et al. (1983) Electrical Charge. It’s Role in the Pathogenesis and Prevention of Experimental Membranous Nephropathy in the Rabbit. Journal of Clinical Investigation, 71, 487-499. [Google Scholar] [CrossRef]
|
|
[14]
|
Debiec, H., Guigonis, V., Mougenot, B., et al. (2002) Antenatal Membra-nous Glomerulonephritis Due to Anti-Neutral Endopeptidase Antibodies. The New England Journal of Medicine, 346, 2053-2060. [Google Scholar] [CrossRef]
|
|
[15]
|
Beck Jr., L.H., Bonegio, R.G., Lambeau, G., et al. (2009) M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy. The New England Journal of Medicine, 361, 11-21. [Google Scholar] [CrossRef]
|
|
[16]
|
Tomas, N.M., Beck Jr., L.H., Meyer-Schwesinger, C., et al. (2014) Thrombospondin Type-1 Domain-Containing 7A in Idiopathic Membranous Nephropathy. The New England Journal of Medicine, 371, 2277-2287. [Google Scholar] [CrossRef]
|
|
[17]
|
Sethi, S. and Fervenza, F.C. (2023) Membranous Nephropa-thy-Diagnosis and Identification of Target Antigens. Nephrology Dialysis Transplantation. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sethi, S., Madden, B.J., Debiec, H., et al. (2019) Exostosin 1/Exostosin 2-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 30, 1123-1136. [Google Scholar] [CrossRef]
|
|
[19]
|
Sethi, S., Debiec, H., Madden, B., et al. (2020) Neural Epidermal Growth Factor-Like 1 Protein (NELL-1) Associated Membranous Nephropathy. Kidney International, 97, 163-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Caza, T.N., Hassen, S.I., Kuperman, M., et al. (2021) Neural Cell Adhesion Molecule 1 Is a Novel Autoantigen in Membranous Lupus Nephritis. Kidney International, 100, 171-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sethi, S., Debiec, H., Madden, B., et al. (2020) Semaphorin 3B-Associated Membranous Nephropathy Is a Distinct Type of Disease Predominantly Present in Pediatric Patients. Kidney International, 98, 1253-1264. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sethi, S., Madden, B., Debiec, H., et al. (2021) Protocadherin 7-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 32, 1249-1261. [Google Scholar] [CrossRef]
|
|
[23]
|
Al-Rabadi, L.F., Caza, T., Trivin-Avillach, C., et al. (2021) Serine Protease HTRA1 as a Novel Target Antigen in Primary Membranous Nephropathy. Journal of the American Society of Nephrology, 32, 1666-1681. [Google Scholar] [CrossRef]
|
|
[24]
|
Reinhard, L., Machalitza, M., Wiech, T., et al. (2022) Netrin G1 Is a Novel Target Antigen in Primary Membranous Nephropathy. Journal of the American Society of Nephrology, 33, 1823-1831. [Google Scholar] [CrossRef]
|
|
[25]
|
Caza, T.N., Hassen, S.I., Kenan, D.J., et al. (2021) Transforming Growth Factor β Receptor 3 (TGFBR3)-Associated Membranous Nephropathy. Kidney 360, 2, 1275-1286. [Google Scholar] [CrossRef]
|
|
[26]
|
Le Quintrec, M., Teisseyre, M., Bec, N., et al. (2021) Contactin-1 Is a Novel Target Antigen in Membranous Nephropathy Associated with Chronic Inflammatory Demyelinating Polyneu-ropathy. Kidney International, 100, 1240-1249. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sethi, S., Madden, B., Casal Moura, M., et al. (2022) Hematopoiet-ic Stem Cell Transplant-Membranous Nephropathy Is Associated with Protocadherin FAT1. Journal of the American Society of Nephrology, 33, 1033-1044. [Google Scholar] [CrossRef]
|
|
[28]
|
Sethi, S., Madden, B., Casal Moura, M., et al. (2023) Membranous Nephropathy in Syphilis Is Associated with Neuron-Derived Neurotrophic Factor. Journal of the American Society of Nephrology, 34, 374-384. [Google Scholar] [CrossRef]
|
|
[29]
|
Caza, T.N., Storey, A., Hassen, S.I., et al. (2023) Discovery of Seven Novel Putative Antigens in Membranous Nephropathy and Membranous Lupus Nephritis Identified By Mass Spectrometry. Kidney International, 103, 593-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Burbelo, P.D., Joshi, M., Chaturvedi, A., et al. (2020) Detection of PLA2R Autoantibodies before the Diagnosis of Membranous Nephropathy. Journal of the American Society of Neph-rology, 31, 208-217. [Google Scholar] [CrossRef]
|
|
[31]
|
Kistler, A.D. and Salant, D.J. (2023) Complement Activation and Effector Pathways in Membranous Nephropathy. Kidney International, 105, 473-483. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Liu, W., Huang, G., Rui, H., et al. (2022) Course Monitoring of Membranous Nephropathy: Both Autoantibodies and Podocytes Require Multidimensional Attention. Autoimmunity Re-views, 21, Article ID: 102976. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yang, L., Wu, Y., Lin, S., et al. (2021) SPLA2-IB and PLA2R Mediate Insufficient Autophagy and Contribute to Podocyte Injury in Idiopathic Membranous Nephropathy by Activation of the P38MAPK/MTOR/ULK1 (Ser757) Signaling Pathway. FASEB Journal, 35, e21170. [Google Scholar] [CrossRef]
|
|
[34]
|
Chen, W., Lin, X., Huang, J., et al. (2014) Integrated Profiling of Mi-croRNA Expression in Membranous Nephropathy Using High-Throughput Sequencing Technology. International Journal of Molecular Medicine, 33, 25-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
He, W., Zhang, J., Yuan, S., et al. (2021) Integrative Analysis of MiRNA-MRNA Network in Idiopathic Membranous Nephropathy by Bioinformatics Analysis. PeerJ, 9, e12271. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, D., Liu, F., Wang, X., et al. (2018) MiR-130a-5p Prevents Angioten-sin II-Induced Podocyte Apoptosis by Modulating M-Type Phospholipase A2 Receptor. Cell Cycle, 17, 2484-2495. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, Q., Bin, S., Budge, K.L., et al. (2024) C3aR-Initiated Signaling Is a Critical Mechanism of Podocyte Injury in Membranous Nephropathy. JCI Insight, 9, e172976. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Nangaku, M., Shankland, S.J. and Couser, W.G. (2005) Cellular Response to Injury in Membranous Nephropathy. Journal of the American Society of Nephrology, 16, 1195-204. [Google Scholar] [CrossRef]
|
|
[39]
|
Cunningham, P.N. and Quigg, R.J. (2005) Contrasting Roles of Complement Activation and Its Regulation in Membranous Nephropathy. Journal of the American Society of Nephrology, 16, 1214-1222. [Google Scholar] [CrossRef]
|
|
[40]
|
Lerner, G.B., Virmani, S., Henderson, J.M., et al. (2021) A Con-ceptual Framework Linking Immunology, Pathology, and Clinical Features in Primary Membranous Nephropathy. Kid-ney International, 100, 289-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cai, Q. and Hendricks, A.R. (2020) Membranous Nephropathy: A Ten-Year Journey of Discoveries. Seminars in Diagnostic Pathology, 37, 116-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tesar, V. and Hruskova, Z. (2021) Autoantibodies in the Diagnosis, Monitoring, and Treatment of Membranous Nephropathy. Frontiers in Immunology, 12, Article 593288. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kidney Disease: Improving Global Outcomes (KDIGO) Glomer-ular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney International, 100, S1-S276. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ronco, P., Beck, L., Debiec, H., et al. (2021) Membranous Nephropathy. Nature Reviews Disease Primers, 7, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sexton, D.J., De Freitas, D.G., Little, M.A., et al. (2018) Di-rect-Acting Oral Anticoagulants as Prophylaxis against Thromboembolism in the Nephrotic Syndrome. Kidney Interna-tional Reports, 3, 784-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Raza, A. and Aggarwal, S. (2021) Membranous Glomerulonephritis. StatPearls, Treasure Island.
|
|
[47]
|
Fernandez-Juarez, G., Rojas-Rivera, J., Logt, A.V., et al. (2021) The STARMEN Trial Indicates That Alternating Treatment with Corticosteroids and Cyclophosphamide Is Superior to Sequential Treatment with Tacrolimus and Rituximab in Primary Membranous Nephropathy. Kidney International, 99, 986-998. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ronco, P., Plaisier, E. and Debiec, H. (2021) Advances in Mem-branous Nephropathy. Journal of Clinical Medicine, 10, Article 607. [Google Scholar] [CrossRef] [PubMed]
|