|
[1]
|
Tiemann, A., Hofmann, G.O., Krukemeyer, M.G., et al. (2014) Histopathological Osteomyelitis Evaluation Score (HOES)—An Innovative Approach to Histopathological Diagnostics and Scoring of Osteomyelitis. GMS Interdiscipli-nary Plastic and Reconstructive Surgery DGPW, 3, Doc08.
|
|
[2]
|
FUnk, S.S. and Copley, L.A.B. (2017) Acute Hema-togenous Osteomyelitis in Children. Orthopedic Clinics of North America, 48, 199-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Al-Manei, K., Ghorbani, M., Naud, S., et al. (2022) Clinical Micro-bial Identification of Severe Oral Infections by MALDI-TOF Mass Spectrometry in Stockholm County: An 11-Year (2010 to 2020) Epidemiological Investigation. Microbiology Spectrum, 10, e0248722. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mcneil, J.C., Vallejo, J.G., Hultén, K.G., et al. (2018) Osteoartic-ular Infections Following Open or Penetrating Trauma in Children in the Post-Community-Acquired Methicillin-Resistant Staphylococcus aureus Era: The Impact of Enterobacter Cloacae. Pediatric Infectious Disease Journal, 37, 1204-1210. [Google Scholar] [CrossRef]
|
|
[5]
|
Lucidarme, Q., Lebrun, D., Vernet-Garnier, V., et al. (2022) Chronic Osteomyelitis of the Jaw: Pivotal Role of Microbiological Investigation and Multidisciplinary Management—A Case Report. Antibiotics (Basel), 11, Article No. 568. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wu, S., Wu, B., Liu, Y., et al. (2022) Mini Review Therapeutic Strategies Targeting for Biofilm and Bone Infections. Frontiers in Microbiology, 13, Article ID: 936285. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Woods, C.R., Bradley, J.S., Chatterjee, A., et al. (2021) Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. Journal of the Pediatric Infectious Diseases Society, 10, 801-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
He, P., Francois, K., Missaghian, N., et al. (2022) Are Bacteria Just By-standers in the Pathogenesis of Inflammatory Jaw Conditions? Journal of Oral and Maxillofacial Surgery, 80, 1094-1102. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Teschke, M., Christensen, A., Far, F., Reich, R.H., et al. (2021) Digitally Designed, Personalized Bone Cement Spacer for Staged TMJ and Mandibular Reconstruction—Introduction of a New Technique. Journal of Cranio-Maxillofacial Surgery, 49, 935-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sakkas, A., Nolte, I., Heil, S., Mayer, B., Kargus, S., Mischkow-ski, R.A. and Thiele, O.C. (2021) Eggerthia catenaformis Infection Originating from a Dental Abscess Causes Severe Intestinal Complications and Osteomyelitis of the Jaw. GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW, 10, Doc02.
|
|
[11]
|
Wang, Z., Xu, J., Wan, J., et al. (2022) Vascular Analysis of Soft Tissues around the Bone Lesion in Osteoradionecrosis, Medication-Related Osteonecrosis, and Infectious Osteomyelitis of the Jaw. Journal of Craniofacial Surgery, 33, E750-E754. [Google Scholar] [CrossRef]
|
|
[12]
|
Ewald, F., Wuesthoff, F., Koehnke, R., et al. (2021) Retrospective Analysis of Bacterial Colonization of Necrotic Bone and Antibiotic Resistance in 98 Pa-tients with Medication-Related Osteonecrosis of the Jaw (MRONJ). Clinical Oral Investigations, 25, 2801-2809. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yamashita, J., Sawa, N., Sawa, Y., et al. (2021) Effect of Bisphosphonates on Healing of Tooth Extraction Wounds in Infectious Osteomyelitis of the Jaw. Bone, 143, Article ID: 115611. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Stroh, P., Günther, F., Meyle, E., et al. (2011) Host De-fence against Staphylococcus aureus Biofilms by Polymorphonuclear Neutrophils: Oxygen Radical Production but Not Phagocytosis Depends on Opsonisation with Immunoglobulin G. Immunobiology, 216, 351-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Meyle, E., Brenner-Weiss, G., Obst, U., et al. (2012) Immune Defense against S. epidermidis Biofilms: Components of the Extracellular Polymeric Substance Activate Distinct Bacteri-cidal Mechanisms of Phagocytic Cells. The International Journal of Artificial Organs, 35, 700-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Arciola, C.R., An, Y.H., Campoccia, D., et al. (2005) Etiology of Im-plant Orthopedic Infections: A Survey on 1027 Clinical Isolates. The International Journal of Artificial Organs, 28, 1091-1100. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, R., Wang, H., Mu, J., et al. (2023) Molecular Events in the Jaw Vascular Unit: A Traditional Review of the Mechanisms Involved in Inflammatory Jaw Bone Diseases. The Journal of Biomedical Research, 37, 313-325. [Google Scholar] [CrossRef]
|
|
[18]
|
Kumar, G., Roger, P., Ticchioni, M., et al. (2014) T Cells from Chronic Bone Infection Show Reduced Proliferation and a High Proportion of CD28-CD4 T Cells. Clinical and Experi-mental Immunology, 176, 49-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kindle, L., Rothe, L., Kriss, M., et al. (2006) Human Microvascular Endo-thelial Cell Activation by IL-1 and TNF-α Stimulates the Adhesion and Transendothelial Migration of Circulating Human CD14+ Monocytes That Develop with RANKL into Functional Osteoclasts. Journal of Bone and Mineral Research, 21, 193-206. [Google Scholar] [CrossRef]
|
|
[20]
|
Dapunt, U., Maurer, S., Giese, T., et al. (2014) The Macrophage In-flammatory Proteins MIP1α (CCL3) and MIP2α (CXCL2) in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation. Mediators of Inflammation, 2014, Article ID: 728619. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dunsche, A., Acil, Y., Siebert, R., et al. (2001) Expression Profile of Human Defensins and Antimicrobial Proteins in Oral Tissues. Journal of Oral Pathology & Medicine, 30, 154-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gallo, R.L. and Huttner, K.M. (1998) Antimicrobial Pep-tides: An Emerging Concept in Cutaneous Biology. Journal of Investigative Dermatology, 111, 739-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Warnke, P.H., Springer, I.N., Russo, P.A.J., et al. (2006) Innate Immunity in Human Bone. Bone, 38, 400-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Stockmann, P., Wehrhan, F., Schwarz-Furlan, S., et al. (2011) In-creased Human Defensine Levels Hint at an Inflammatory Etiology of Bisphosphonate-Associated Osteonecrosis of the Jaw: An Immunohistological Study. Journal of Translational Medicine, 9, Article No. 135. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, Q., Hou, T., Luo, F., et al. (2014) Involvement of Toll-Like Receptor 2 and Pro-Apoptotic Signaling Pathways in Bone Remodeling in Osteomyelitis. Cellular Physiology and Bio-chemistry, 34, 1890-1900. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kawai, T. and Akira, S. (2011) Toll-Like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity, 34, 637-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Guo, C., Yuan, L., Wang, J., et al. (2014) Lipopolysaccharide (LPS) Induces the Apoptosis and Inhibits Osteoblast Differentiation through JNK Pathway in MC3T3-E1 Cells. In-flammation, 37, 621-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sanchez, C. J., Ward, C.L., Romano, D.R., et al. (2013) Staphy-lococcus aureus Biofilms Decrease Osteoblast Viability, Inhibits Osteogenic Differentiation, and Increases Bone Resorp-tion in Vitro. BMC Musculoskeletal Disorders, 14, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Claro, T., Widaa, A., O’seaghdha, M., et al. (2011) Staphylococcus aureus Protein A Binds to Osteoblasts and Triggers Signals That Weaken Bone in Osteomyelitis. PLOS ONE, 6, e18748. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Widaa, A., Claro, T., Foster, T.J., et al. (2012) Staphylococcus aureus Protein a Plays a Critical Role in Mediating Bone Destruction and Bone Loss in Osteomyelitis. PLOS ONE, 7, e40586. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ludwig, N., Thörner-Van Almsick, J., Mersmann, S., et al. (2023) Nuclease Activity and Protein A Release of Staphylococcus aureus Clinical Isolates Determine the Virulence in a Murine Model of Acute Lung Infection. Frontiers in Immunology, 14, Article ID: 1259004. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Claro, T., Widaa, A., Mcdonnell, C., et al. (2013) Staphylococ-cus aureus Protein A Binding to Osteoblast Tumour Necrosis Factor Receptor 1 Results in Activation of Nuclear Factor Kappa B and Release of Interleukin-6 in Bone Infection. Microbiology (Reading), 159, 147-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Casari, G., Dall’Ora, M., Melandri, A., et al. (2023) Impact of Soluble Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Released by Engineered Adipose Mesenchymal Stromal Cells on White Blood Cells. Cytotherapy, 25, 605-614. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Halabi, S., Shiber, S., Paz, M., et al. (2023) Host Test Based on Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, Interferon Gamma-Induced Protein-10 and C-Reactive Pro-tein for Differentiating Bacterial and Viral Respiratory Tract Infections in Adults: Diagnostic Accuracy Study. Clinical Microbiology and Infection, 29, 1159-1165. [Google Scholar] [CrossRef] [PubMed]
|