一类迭代泛函微分方程的光滑解
Smooth Solutions of an Iterative Functional Differential Equation
摘要: 本文利用Faà di Bruno公式及Schauder不动点定理,证明了一类迭代泛函微分方程
的光滑解的存在性和唯一性。
Abstract:
By Faà di Bruno’s formula, using Schauder fixed point theorem, we study the existence and uniqueness of smooth solutions of an iterative functional differential equation .
参考文献
|
[1]
|
J. Hale. Theory of functional differential equations. New York: Springer Verlag, 1977.
|
|
[2]
|
E. Eder. The functional differential equations. Journal of Differential Equations, 1984, 54(3): 390-400.
|
|
[3]
|
E. Feckan. On certain type of functional differential equations. Mathematica Slovaca, 1993, 43(1): 39-43.
|
|
[4]
|
K. Wang. On the equation. Funkcialaj Ekvacioc, 1990, 33: 405-425.
|
|
[5]
|
M. I. Skolink. Radar handbook. New York: McGraw-Hill, 1990: 234-238.
|
|
[6]
|
S. Stanek. On global properties of solutions of functional differential equation. Dynamic Systems & Applications, 1995, 4: 263-278.
|
|
[7]
|
J. G. Si, W. R. Li and S. S. Cheng. Analytic solutions of an iterative functional differential equation. Computers & Mathematics with Applications, 1997, 33(6): 47-51.
|
|
[8]
|
J. G. Si, W. N. Zhang. Analytic solutions of a class of iterative functional differential equation. Journal of Computational and Applied Mathematics, 2004, 162(2): 467-481.
|
|
[9]
|
J. G. Si, S. S. Cheng. Smooth solutions of a nonhomogeneous iterative functional differential equation. Proceedings of the Royal Society of Edinburgh, 1998, 128(A): 821-831.
|
|
[10]
|
J. G. Si, X. P. Wang. Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients. Journal of Mathematical Analysis and Applications, 1998, 226(2): 377-392.
|