|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Smyth, E.C., Nilsson, M., Grabsch, H.I., et al. (2020) Gastric Cancer. The Lancet, 396, 635-648. [Google Scholar] [CrossRef]
|
|
[3]
|
Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hegde, P.S. and Chen, D.S. (2020) Top 10 Challenges in Cancer Immu-notherapy. Immunity, 52, 17-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rojo De La Vega, M., Chapman, E. and Zhang, D.D. (2018) NRF2 and the Hallmarks of Cancer. Cancer Cell, 34, 21-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gambardella, V., Gimeno-Valiente, F., Tarazona, N., et al. (2019) NRF2 through RPS6 Activation Is Related to Anti-HER2 Drug Resistance in HER2-Amplified Gastric Cancer. Clinical Cancer Research, 25, 1639-1649. [Google Scholar] [CrossRef]
|
|
[7]
|
Singh, A., Daemen, A., Nickles, D., et al. (2021) NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clinical Cancer Research, 27, 877-888. [Google Scholar] [CrossRef]
|
|
[8]
|
Kawasaki, Y., Ishigami, S., Arigami, T., et al. (2015) Clini-copathological Significance of Nuclear Factor (Erythroid-2)-Related Factor 2 (Nrf2) Expression in Gastric Cancer. BMC Cancer, 15, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhu, B., Tang, L., Chen, S., et al. (2018) Targeting the Upstream Transcriptional Activator of PD-L1 as an Alternative Strategy in Melanoma Therapy. Oncogene, 37, 4941-4954. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sturm, G., Finotello, F., Petitprez, F., et al. (2019) Comprehensive Evaluation of Transcriptome-Based Cell-Type Quantification Methods for Immuno-Oncology. Bioinformatics, 35, I436-I445. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2019) Esti-mating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. International Journal of Cancer, 144, 1941-1953. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lordick, F. (2020) Chemotherapy for Resectable Microsatellite Instabil-ity-High Gastric Cancer? The Lancet Oncology, 21, 203. [Google Scholar] [CrossRef]
|
|
[13]
|
Smyth, E.C., Verheij, M., Allum, W., et al. (2016) Gastric Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 27, V38-V49. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Högner, A. and Moehler, M. (2022) Immunotherapy in Gastric Can-cer. Current Oncology, 29, 1559-1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, K., Wang, X., Yang, L., et al. (2021) The Anti-PD-1/PD-L1 Immunotherapy for Gastric Esophageal Cancer: A Systematic Review and Meta-Analysis and Literature Review. Cancer Control , 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liang, H., Li, Z., Huang, Z., et al. (2022) Prognostic Characteris-tics and Clinical Response to Immunotherapy Targeting Programmed Cell Death 1 for Patients with Advanced Gastric Cancer with Liver Metastases. Frontiers in Immunology, 13, Article 1015549. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shibata, T., Ohta, T., Tong, K.I., et al. (2008) Cancer Related Mutations in NRF2 Impair Its Recognition by Keap1-Cul3 E3 Ligase and Promote Malignancy. Proceedings of the Na-tional Academy of Sciences of the United States of America, 105, 13568-13573. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jin, X., Zheng, Y., Chen, Z., et al. (2021) Integrated Analysis of Pa-tients with KEAP1/NFE2L2/CUL3 Mutations in Lung Adenocarcinomas. Cancer Medicine, 10, 8673-8692. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dempke, W.C.M. and Reck, M. (2021) KEAP1/NRF2 (NFE2L2) Muta-tions in NSCLC—Fuel for a Superresistant Phenotype? Lung Cancer, 159, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, J., Zheng, Q. and Chen, Z. (2022) The Nrf2 Pathway in Liver Diseases. Frontiers in Cell and Developmental Biology, 10, Article 826204. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Farkhondeh, T., Pourbagher-Shahri, A.M., Azimi-Nezhad, M., et al. (2021) Roles of Nrf2 in Gastric Cancer: Targeting for Therapeutic Strategies. Molecules, 26, Article 3157. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tao, S., Rojo De La Vega, M., Chapman, E., et al. (2018) The Effects of NRF2 Modulation on the Initiation and Progression of Chemically and Genetically Induced Lung Cancer. Mo-lecular Carcinogenesis, 57, 182-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Johnson, N.M., Egner, P.A., Baxter, V.K., et al. (2014) Complete Protection Against Aflatoxin B(1)-Induced Liver Cancer with a Triterpenoid: DNA Adduct Dosimetry, Molecular Signature, and Genotoxicity Threshold. Cancer Prevention Research, 7, 658-665. [Google Scholar] [CrossRef]
|
|
[24]
|
Garufi, A., Pistritto, G., D’Orazi, V., et al. (2022) The Impact of NRF2 Inhibition on Drug-Induced Colon Cancer Cell Death and P53 Activity: A Pilot Study. Biomolecules, 12, Article 461. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pillai, R., Hayashi, M., Zavitsanou, A.M. and Papagian-nakopoulos, T. (2022) NRF2: KEAPing Tumors Protected. Cancer Discovery, 12, 625-643. [Google Scholar] [CrossRef]
|
|
[26]
|
Shibata, T., Kokubu, A., Gotoh, M., et al. (2008) Genetic Al-teration of Keap1 Confers Constitutive Nrf2 Activation and Resistance to Chemotherapy in Gallbladder Cancer. Gastro-enterology, 135, 1358-1368.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, Y., Wang, X., Zhang, J., et al. (2022) Abnormal Pheno-type of Nrf2 Is Associated with Poor Prognosis through Hypoxic/VEGF-A-Rap1b/VEGFR2 Pathway in Gastric Cancer. Aging, 14, 3293-3312. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yu, S., Wu, T., Wang, J., et al. (2018) Combined Evaluation of Ex-pression of CXCR4 and Nrf2 as Prognostic Factor for Patients with Gastric Carcinoma. Anti-Cancer Agents in Medicinal Chemistry, 18, 388-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Han, S., Zhang, C., Li, Q., et al. (2014) Tu-mour-Infiltrating CD4+ and CD8+ Lymphocytes as Predictors of Clinical Outcome in Glioma. British Journal of Cancer, 110, 2560-2568. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Glaire, M.A., Domingo, E., Sveen, A., et al. (2019) Tumour-Infiltrating CD8+ Lymphocytes and Colorectal Cancer Recurrence by Tumour and Nodal Stage. British Journal of Cancer, 121, 474-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Thike, A.A., Chen, X., Koh, V.C.Y., et al. (2020) Higher Densi-ties of Tumour-Infiltrating Lymphocytes and CD4+ T Cells Predict Recurrence and Progression of Ductal Carcinoma in Situ of the Breast. Histopathology, 76, 852-864. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lei, X., Lei, Y., Li, J.K., et al. (2020) Immune Cells within the Tumor Mi-croenvironment: Biological Functions and Roles in Cancer Immunotherapy. Cancer Letters, 470, 126-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, D.H.W., Kim, Y.W., Sefcovicova, N., et al. (2023) Tumour In-filtrating Lymphocytes and Survival after Adjuvant Chemotherapy in Patients with Gastric Cancer: Post-Hoc Analysis of the CLASSIC Trial. British Journal of Cancer, 128, 2318-2325. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lee, J.Y., Kannan, B., Lim, B.Y., et al. (2022) The Mul-ti-Dimensional Biomarker Landscape in Cancer Immunotherapy. International Journal of Molecular Sciences, 23, Article 7839. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Poznanski, S.M., Singh, K., Ritchie, T.M., et al. (2021) Metabol-ic Flexibility Determines Human NK Cell Functional Fate in the Tumor Microenvironment. Cell Metabolism, 33, 1205-1220.E5. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, A., Zhang, J., Li, X., et al. (2021) HPM-SCs Inhibit the Expression of PD-1 in CD4+IL-10+ T Cells and Mitigate Liver Damage in a GVHD Mouse Model by Regulating the Crosstalk Between Nrf2 and NF-κB Signaling Pathway. Stem Cell Research & Therapy, 12, Article No. 368. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yu, P., He, W., Zhang, Y., et al. (2022) SFRP4 Is a Poten-tial Biomarker for the Prognosis and Immunotherapy for Gastric Cancer. Journal of Oncology, 2022, Article ID: 8829649. [Google Scholar] [CrossRef] [PubMed]
|