|
[1]
|
Opoku-Temeng, C., Malachowa, N., Kobayashi, S.D., et al. (2022) Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. Journal of Innate Immunity, 14, 167-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, P., Liang, Q., Liu, W., et al. (2021) Convergence of Carbapenem Re-sistance and Hypervirulence in a Highly-Transmissible ST11 Clone of K. pneumoniae: An Epidemiological, Genomic and Functional Study. Virulence, 12, 377-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Martin, R.M. and Bachman, M.A. (2018) Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xu, J., Zhao, Z., Ge, Y., et al. (2020) Rapid Emergence of a Pandrug-Resistant Klebsiella pneumoniae ST11 Isolate in an Inpatient in a Teaching Hospital in China after Treatment with Multiple Broad-Spectrum Antibiotics. Infection and Drug Resistance, 13, 799-804. [Google Scholar] [CrossRef]
|
|
[5]
|
武亚鑫, 赵敏, 李浩然, 等. 耐碳青霉烯肺炎克雷伯菌流行现状、耐药机制及抗菌药物诊疗进展[J]. 长春中医药大学学报, 2023, 39(1): 96-103.
|
|
[6]
|
Pereira, C., Larsson, J., Hjort, K., et al. (2021) The Highly Dynamic Nature of Bacterial Heteroresistance Impairs Its Clinical Detection. Commu-nications Biology, 4, Article No. 521. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Uc-Cachón, A.H., Graci-da-Osorno, C., Luna-Chi, I.G., et al. (2019) High Prevalence of Antimicrobial Resistance among Gram-Negative Isolated Bacilli in Intensive Care Units at a Tertiary-Care Hospital in Yucatán Mexico. Medicina (Kaunas, Lithuania), 55, Article No. 588. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Alexander, H.E. and Leidy, G. (1947) Mode of Action of Streptomycin on Type B Hemophilus Influenzae: II. Nature of Resistant Variants. The Journal of Experimental Medicine, 85, 607-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kayser, F.H., Benner, E.J. and Hoeprich, P.D. (1970) Ac-quired and Native Resistance of Staphylococcus aureus to Cephalexin and Other Beta-Lactam Antibiotics. Applied Mi-crobiology, 20, 1-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Andersson, D.I., Nicoloff, H. and Hjort, K. (2019) Mechanisms and Clinical Relevance of Bacterial Heteroresistance. Nature Reviews Microbiology, 17, 479-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
El-Halfawy, O.M. and Valvano, M.A. (2015) Antimicrobial Het-eroresistance: An Emerging Field in Need of Clarity. Clinical Microbiology Reviews, 28, 191-207. [Google Scholar] [CrossRef]
|
|
[12]
|
韩塔拉, 王俊瑞. 金黄色葡萄球菌异质性耐药机制及实验室检测技术[J]. 中国感染控制杂志, 2022, 21(12): 1249-1256.
|
|
[13]
|
Anderson, S.E., Sherman, E.X., Weiss, D.S., et al. (2018) Aminoglycoside Heteroresistance in Acinetobacter baumannii AB5075. MSphere, 3, e00271-18. [Google Scholar] [CrossRef]
|
|
[14]
|
Nicoloff, H., Hjort, K., Levin, B.R., et al. (2019) The High Preva-lence of Antibiotic Heteroresistance in Pathogenic Bacteria Is Mainly Caused by Gene Amplification. Nature Microbiol-ogy, 4, 504-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dewachter, L., Fauvart, M. and Michiels, J. (2019) Bacterial Het-erogeneity and Antibiotic Survival: Understanding and Combatting Persistence and Heteroresistance. Molecular Cell, 76, 255-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
任政宇, 庆会国, 贠建蔚. 幽门螺杆菌抗生素异质性耐药研究进展[J]. 胃肠病学和肝病学杂志, 2022, 31(9): 974-979.
|
|
[17]
|
Bradley, P., Gordon, N.C., Walker, T.M., et al. (2015) Rapid Antibiotic-Resistance Predictions from Genome Sequence Data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature Communications, 6, Article No. 10063.
|
|
[18]
|
Operario, D.J., Koeppel, A.F., Turner, S.D., et al. (2017) Prevalence and Extent of Heteroresistance by Next Generation Sequencing of Multidrug-Resistant Tuberculosis. PLOS ONE, 12, e0176522. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Athamneh, A.I., Alajlouni, R.A., Wallace, R.S., et al. (2014) Phenotypic Profiling of Antibiotic Response Signatures in Escherichia coli Using Raman Spectroscopy. Antimicrobial Agents and Chemotherapy, 58, 1302-1314. [Google Scholar] [CrossRef]
|
|
[20]
|
Dai, Y., Li, C., Yi, J., et al. (2020) Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Analytical Chemistry, 92, 8051-8057. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Orlo, P., et al. (2014) An Overview of Carbapenem-Resistant Klebsiella pneumoniae: Epidemiology and Control Measures. Reviews in Medical Microbiology, 25, 7-14. [Google Scholar] [CrossRef]
|
|
[22]
|
Sugawara, E., Kojima, S. and Nikaido, H. (2016) Klebsiella pneumoniae Major Porins OmpK35 and OmpK36 Allow More Efficient Diffusion of β-Lactams than Their Escherichia coli Homologs OmpF and OmpC. Journal of Bacteriology, 198, 3200-3208. [Google Scholar] [CrossRef]
|
|
[23]
|
Adams-Sapper, S., Nolen, S., Donzelli, G.F., et al. (2015) Rapid Induc-tion of High-Level Carbapenem Resistance in Heteroresistant KPC-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 59, 3281-3289. [Google Scholar] [CrossRef]
|
|
[24]
|
Jayol, A., Nordmann, P., Brink, A., et al. (2015) Heteroresistance to Colistin in Klebsiella pneumoniae Associated with Alterations in the PhoPQ Regulatory System. Antimicrobial Agents and Chemotherapy, 59, 2780-2784. [Google Scholar] [CrossRef]
|
|
[25]
|
Cheong, H.S., Kim, S.Y., Wi, Y.M., et al. (2019) Colistin Hetero-resistance in Klebsiella pneumoniae Isolates and Diverse Mutations of PmrAB and PhoPQ in Resistant Subpopulations. Journal of Clinical Medicine, 8, Article No. 1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Halaby, T., Kucukkose, E., Janssen, A.B., et al. (2016) Genomic Charac-terization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. Antimicrobial Agents and Chemotherapy, 60, 6837-6843. [Google Scholar] [CrossRef]
|
|
[27]
|
Morales-León, F., Lima, C.A., González-Rocha, G., et al. (2020) Col-istin Heteroresistance among Extended Spectrum β-Lactamases-Producing Klebsiella pneumoniae. Microorganisms, 8, Article No. 1279. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Formosa, C., Herold, M., Vidaillac, C., et al. (2015) Unrav-elling of a Mechanism of Resistance to Colistin in Klebsiella pneumoniae Using Atomic Force Microscopy. The Journal of Antimicrobial Chemotherapy, 70, 2261-2270. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Silva, A., Sousa, A.M., Alves, D., et al. (2016) Heteroresistance to Colistin in Klebsiella pneumoniae Is Triggered by Small Colony Variants Sub-Populations within Biofilms. Pathogens and Dis-ease, 74, ftw036. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zheng, J.X., Lin, Z.W., Sun, X., et al. (2018) Overexpression of OqxAB and MacAB Efflux Pumps Contributes to Eravacycline Resistance and Heteroresistance in Clinical Isolates of Klebsiella pneumoniae. Emerging Microbes & Infections, 7, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bialek-Davenet, S., Lavigne, J.P., Guyot, K., et al. (2015) Differ-ential Contribution of AcrAB and OqxAB Efflux Pumps to Multidrug Resistance and Virulence in Klebsiella pneumoni-ae. The Journal of Antimicrobial Chemotherapy, 70, 81-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Foudraine, D.E., Strepis, N., Stingl, C., et al. (2021) Exploring Antimicrobial Resistance to Beta-Lactams, Aminoglycosides and Fluoroquinolones in E. coli and K. pneumoniae Using Proteogenomics. Scientific Reports, 11, Article No. 12472. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
张菲阳, 周英顺. 临床常见革兰阴性菌异质性耐药研究进展[J]. 西南医科大学学报, 2021, 44(5): 520-524.
|
|
[34]
|
王立新, 苏云福, 王毅. 临床病原菌磷霉素耐药机制研究进展[J]. 检验医学, 2022, 37(10): 993-997.
|
|
[35]
|
Band, V.I., Hufnagel, D.A., Jaggavarapu, S., et al. (2019) Antibiotic Com-binations That Exploit Heteroresistance to Multiple Drugs Effectively Control Infection. Nature Microbiology, 4, 1627-1635. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ma, X., He, Y., Yu, X., et al. (2019) Ceftazidime/Avibactam Im-proves the Antibacterial Efficacy of Polymyxin B against Polymyxin B Heteroresistant KPC-2-Producing Klebsiella pneumoniae and Hinders Emergence of Resistant Subpopulation in Vitro. Frontiers in Microbiology, 10, Article No. 2029. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
喻华, 徐雪松, 李敏, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版) [J]. 中国感染与化疗杂志, 2022, 22(4): 463-474.
|