|
[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
何明艳. 乳腺癌流行趋势分析与术后放疗效应研究[D]: [硕士学位论文]. 衡阳: 南华大学, 2019.
|
|
[3]
|
Yildiz, T., Gu, R., Zauscher, S., et al. (2018) Doxorubicin-Loaded Prote-ase-Activated Near-Infrared Fluorescent Polymeric Nanoparticles for Imaging and Therapy of Cancer. International Journal of Nanomedicine, 13, 6961-6986. [Google Scholar] [CrossRef]
|
|
[4]
|
Harbeck, N., Penault-Llorca, F., Cortes, J., et al. (2019) Breast Cancer. Nature Reviews Disease Primers, 5, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Conforti, F., Pala, L., Sala, I., et al. (2021) Evaluation of Pathological Complete Response as Surrogate Endpoint in Neoadjuvant Randomised Clinical Trials of Early Stage Breast Cancer: Systematic Review and Meta-Analysis. BMJ, 375, e066381. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fisher, B., Brown, A., Mamounas, E., et al. (1997) Effect of Pre-operative Chemotherapy on Local-Regional Disease in Women with Operable Breast Cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-18. Journal of Clinical Oncology, 15, 2483-2493. [Google Scholar] [CrossRef]
|
|
[7]
|
Rastogi, P., Anderson, S.J., Bear, H.D., et al. (2008) Preopera-tive Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. Journal of Clinical Oncology, 26, 778-785. [Google Scholar] [CrossRef]
|
|
[8]
|
Loibl, S. (2015) Neoadjuvant Treatment of Breast Cancer: Max-imizing Pathologic Complete Response Rates to Improve Prognosis. Current Opinion in Obstetrics and Gynecology, 27, 85-91. [Google Scholar] [CrossRef]
|
|
[9]
|
芦洁. 影响乳腺癌新辅助化疗疗效及预后的相关因素分析[D]: [硕士学位论文]. 乌鲁木齐: 新疆医科大学, 2019.
|
|
[10]
|
张小飞, 覃庆洪, 练斌, 等. 167例Ⅱ、Ⅲ期乳腺癌新辅助化疗疗效评价及影响因素[J]. 现代肿瘤医学, 2015, 23(13): 1823-1827.
|
|
[11]
|
Jin, X., Jiang, Y.Z., Chen, S., et al. (2016) A Nomogram for Predicting Pathological Complete Response in Patients with Human Epidermal Growth Factor Receptor 2 Negative Breast Cancer. BMC Cancer, 16, Article No. 606. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Goorts, B., Van Nijnatten, T.J., De Munck, L., et al. (2017) Clinical Tumor Stage Is the Most Important Predictor of Pathological Complete Response Rate after Neoadjuvant Chemotherapy in Breast Cancer Patients. Breast Cancer Research and Treatment, 163, 83-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xu, Y., Chen, M., Liu, C., et al. (2017) Association Study Con-firmed Three Breast Cancer-Specific Molecular Subtype-Associated Susceptibility Loci in Chinese Han Women. On-cologist, 22, 890-894. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mei, F., Liu, J.Y. and Xue, W.C. (2019) [Histological Grading of Invasive Breast Carcinoma: Nottingham Histological Grading System]. Chinese Journal of Pathology, 48, 659-664.
|
|
[15]
|
蔡媛, 翁寿田, 车潇良, 等. 乳腺癌组织学类型及分级对预测新辅助化疗疗效的价值[J]. 现代肿瘤医学, 2013, 21(1): 78-80.
|
|
[16]
|
Tewari, M., Krishnamurthy, A. and Shukla, H.S. (2008) Predictive Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Surgical Oncology, 17, 301-311. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Miyoshi, Y., Kurosumi, M., Kurebayashi, J., et al. (2008) Low Nuclear Grade But Not Cell Proliferation Predictive of Pathological Complete Response to Docetaxel in Human Breast Cancers. Journal of Cancer Research and Clinical Oncology, 134, 561-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
覃舒婷, 莫军扬, 周韬. 乳腺癌分子亚型对新辅助化疗疗效及预后的预测价值[J]. 实用医学杂志, 2015, 31(6): 953-955.
|
|
[19]
|
王勒, 郑红梅, 吴新红, 等. 乳腺癌临床病理特征和分子分型对新辅助化疗疗效及预后的预测价值[J]. 中华实用诊断与治疗杂志, 2019, 33(8): 739-743.
|
|
[20]
|
Haque, W., Verma, V., Hatch, S., et al. (2018) Response Rates and Pathologic Complete Response by Breast Cancer Molecular Subtype Following Neoadjuvant Chemotherapy. Breast Cancer Research and Treatment, 170, 559-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ohara, A.M., Naoi, Y., Shimazu, K., et al. (2019) PAM50 for Prediction of Response to Neoadjuvant Chemotherapy for ER-Positive Breast Cancer. Breast Cancer Research and Treatment, 173, 533-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lashen, A.G., Toss, M.S., Ghannam, S.F., et al. (2023) Expres-sion, Assessment and Significance of Ki67 Expression in Breast Cancer: An Update. Journal of Clinical Pathology, 76, 357-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Finkelman, B.S., Zhang, H., Hicks, D.G., et al. (2023) The Evolution of Ki-67 and Breast Carcinoma: Past Observations, Present Directions, and Future Considerations. Cancers, 15, Article 808. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
刘现义, 王晓春, 张丹丹, 等. LRP16、Ki67及EGFR表达与乳腺癌的临床病理因素及预后的关系探讨[J]. 中国地方病防治杂志, 2017, 32(4): 456, 458.
|
|
[25]
|
Chen, X., He, C., Han, D., et al. (2017) The Predictive Value of Ki-67 before Neoadjuvant Chemotherapy for Breast Cancer: A Systematic Review and Meta-A2017nalysis. Future Oncology, 13, 843-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, R., Ye, Y., Yang, C., et al. (2018) Assessment of the Predictive Role of Pretreatment Ki-67 and Ki-67 Changes in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy according to the Molecular Classification: A Retrospective Study of 1010 Patients. Breast Cancer Research and Treatment, 170, 35-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ricciardi, G.R., Adamo, B., Ieni, A., et al. (2015) Androgen Receptor (AR), E-Cadherin, and Ki-67 as Emerging Targets and Novel Prognostic Markers in Triple-Negative Breast Cancer (TNBC) Patients. PLOS ONE, 10, e0128368. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
梁晨露, 王晨, 俞星飞, 等. 三阴性乳腺癌新辅助化疗后Ki67表达变化与患者生存的关系[J]. 中华乳腺病杂志(电子版), 2019, 13(3): 145-149.
|
|
[29]
|
Iyengar, N.M., Gucalp, A., Dannenberg, A.J., et al. (2016) Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. Journal of Clinical Oncology, 34, 4270-4276. [Google Scholar] [CrossRef]
|
|
[30]
|
Cui, D., Huang, Z., Liu, Y. and Ouyang, G.L. (2017) The Multifaceted Role of Periostin in Priming the Tumor Microenvironments for Tumor Progression. Cellular and Molecular Life Sciences, 74, 4287-4291. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sivapiragasam, A., Ashok Kumar, P., Sokol, E.S., et al. (2021) Predictive Biomarkers for Immune Checkpoint Inhibitors in Metastatic Breast Cancer. Cancer Medicine, 10, 53-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kaewkangsadan, V., Verma, C., Eremin, J.M., et al. (2016) Crucial Con-tributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to A Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. Journal of Immunology Research, 2016, Article ID: 4757405. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ingold Heppner, B., Untch, M., Denkert, C., et al. (2016) Tumor-Infiltrating Lymphocytes: A Predictive and Prognostic Biomarker in Neoadjuvant-Treated HER2-Positive Breast Cancer. Clinical Cancer Research, 22, 5747-5754. [Google Scholar] [CrossRef]
|
|
[34]
|
Nestor, C.E., Ottaviano, R., Reinhardt, D., et al. (2015) Rapid Reprogramming of Epigenetic and Transcriptional Profiles in Mammalian Culture Systems. Genome Biology, 16, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sigin, V.O., Kalinkin, A.I., Nikolaeva, A.F., et al. (2023) DNA Methylation and Prospects for Predicting the Therapeutic Effect of Neoadjuvant Chemotherapy for Tri-ple-Negative and Luminal B Breast Cancer. Cancers, 15, Article 1630. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pedersen, C.A., Cao, M.D., Fleischer, T., et al. (2022) DNA Meth-ylation Changes in Response to Neoadjuvant Chemotherapy Are Associated with Breast Cancer Survival. Breast Cancer Research, 24, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hsu, P.C., Kadlubar, S.A., Siegel, E.R., et al. (2020) Ge-nome-Wide DNA Methylation Signatures to Predict Pathologic Complete Response from Combined Neoadjuvant Chemotherapy with Bevacizumab in Breast Cancer. PLOS ONE, 15, e0230248. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Meyer, B., Clifton, S., Locke, W., et al. (2021) Identification of DNA Methylation Biomarkers with Potential to Predict Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Clinical Epigenetics, 13, Article No. 226. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, H., Guo, M., Wei, H., et al. (2023) Targeting P53 Pathways: Mechanisms, Structures, and Advances in Therapy. Signal Transduction and Targeted Therapy, 8, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Levine, A.J. (2020) P53: 800 Million Years of Evolution and 40 Years of Discovery. Nature Reviews Cancer, 20, 471-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sullivan, K.D., Galbraith, M.D., Andrysik, Z. and Espinosa, J.M. (2018) Mechanisms of Transcriptional Regulation by P53. Cell Death & Differentiation, 25, 133-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Darb-Esfahani, S., Denkert, C., Stenzinger, A., et al. (2016) Role of TP53 Mutations in Triple Negative and HER2-Positive Breast Cancer Treated with Neoadjuvant Anthracycline/Taxane-Based Chemotherapy. Oncotarget, 7, 67686-67698. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Albinsaad, L.S., Kim, J., Chung, I.Y., et al. (2021) Prognostic Value of P53 Expression in Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Breast Cancer Research and Treatment, 187, 447-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Burgess, A.W., Cho, H.S., Eigenbrot, C., et al. (2003) An Open-And-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Molecular Cell, 12, 541-552. [Google Scholar] [CrossRef]
|
|
[45]
|
Mendelsohn, J. (2002) Targeting the Epidermal Growth Factor Receptor for Cancer Therapy. Journal of Clinical Oncology, 20, 1s-13s.
|
|
[46]
|
Radosevic-Robin, N., Selenica, P., Zhu, Y., et al. (2021) Recurrence Biomarkers of Triple Negative Breast Cancer Treated with Neoadjuvant Chemotherapy and Anti-EGFR Antibodies. NPJ Breast Cancer, 7, Article No. 124. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
石国建, 顾蓓, 郭斌, 等. 局部晚期乳腺癌患者新辅助化疗前后P53、Ki-67、NM23、EGFR的表达变化及临床意义[J]. 癌症进展, 2019, 17(7): 812-816.
|
|
[48]
|
魏朋. 乳腺癌组织中PD-1、PD-L1的表达与新辅助化疗疗效的相关性[J]. 航空航天医学杂志, 2022, 33(8): 947-950.
|
|
[49]
|
Shang, M., Chi, Y., Zhang, J., et al. (2022) The Therapeutic Effectiveness of Neoadjuvant Trastuzumab Plus Chemotherapy for HER2-Positive Breast Cancer Can Be Predicted by Tumor-Infiltrating Lymphocytes and PD-L1 Expression. Frontiers in Oncology, 11, Article 706606. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
徐海敏, 戴瑶, 马雨竹, 等. MRT1WI瘤体及瘤周影像组学联合临床特征预测乳腺癌新辅助化疗疗效[J]. 中国医学影像技术, 2023, 39(10): 1520-1525.
|