|
[1]
|
Dhiman, G., Srivastava, N., Goyal, M., Rakha, E., Lothion-Roy, J., Mongan, N.P., Miftakhova, R.R., Khaiboullina, S.F., Rizvanov, A.A. and Baranwal, M. (2019) Metadherin: A Therapeutic Target in Multiple Cancers. Frontiers in Oncology, 9, Ar-ticle No. 349. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sarkar, D. and Fisher, P.B. (2013) AEG-1/MTDH/LYRIC: Clinical Significance. Advances in Cancer Research, 120, 39-74. [Google Scholar] [CrossRef]
|
|
[3]
|
Shi, X. and Wang, X. (2015) The Role of MTDH/AEG-1 in the Progression of Cancer. International Journal of Clinical and Experimental Medicine, 8, 4795-4807.
|
|
[4]
|
Kang, D.C., Su, Z.Z., Sarkar, D., Emdad, L., Volsky, D.J. and Fisher, P.B. (2005) Cloning and Characterization of HIV-1-Inducible Astrocyte Elevated Gene-1, AEG-1. Gene, 353, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sutherland, H.G., Lam, Y.W., Briers, S., Lamond, A.I. and Bickmore, W.A. (2004) 3D3/Lyric: A Novel Transmembrane Protein of the Endoplasmic Reticu-lum and Nuclear Envelope, Which Is Also Present in the Nucleolus. Experimental Cell Research, 294, 94-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, J., Sun, M.X., Hua, Y.Q. and Cai, Z.D. (2014) Prognostic Signif-icance of Serum Lactate Dehydrogenase Level in Osteosarcoma: A Meta-Analysis. Journal of Cancer Research and Clinical Oncology, 140, 1205-1210. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Thirkettle, H.J., Girling, J., Warren, A.Y., Mills, I.G., Sahadevan, K., Leung, H., Hamdy, F., Whitaker, H.C. and Neal, D.E. (2009) LYRIC/AEG-1 Is Targeted to Different Subcellular Compart-ments by Ubiquitinylation and Intrinsic Nuclear Localization Signals. Clinical Cancer Research, 15, 3003-3013. [Google Scholar] [CrossRef]
|
|
[8]
|
Chen, Y., Huang, S., Guo, R. and Chen, D. (2021) Metadher-in-Mediated Mechanisms in Human Malignancies. Biomarkers in Medicine, 15, 1769-1783. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qian, B., Yao, Y., Liu, C., Zhang, J., Chen, H. and Li, H. (2017) SU6668 Modulates Prostate Cancer Progression by Downregulating MTDH/AKT Signaling Pathway. International Journal of Oncolo-gy, 50, 1601-1611. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, J., Yu, X.H., Yan, Y.G., Wang, C. and Wang, W.J. (2015) PI3K/Akt Signaling in Osteosarcoma. Clinica Chimica Acta, 444, 182-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sriramulu, S., Sun, X.F., Malayaperumal, S., Ganesan, H., Zhang, H., Ramachandran, M., Banerjee, A. and Pathak, S. (2021) Emerging Role and Clinicopathological Significance of AEG-1 in Different Cancer Types: A Concise Review. Cells, 10, Article No. 1497. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, W., Zhangyuan, G., Wang, F., Jin, K., Shen, H., Zhang, L., Yuan, X., Wang, J., Zhang, H., Yu, W., Huang, R., Xu, X., Yin, Y., Zhong, G., Lin, A. and Sun, B. (2021) The Zinc Finger Protein Miz1 Suppresses Liver Tumorigenesis by Restricting Hepatocyte-Driven Macrophage Activation and Inflammation. Immunity, 54, 1168-1185.E8. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, Z., Cao, C.J., Huang, L.L., Ke, Z.F., Luo, C.J., Lin, Z.W., Wang, F., Zhang, Y.Q. and Wang, L.T. (2015) EFEMP1 Promotes the Migration and Invasion of Osteosarcoma via MMP-2 with Induction by AEG-1 via NF-κB Signaling Pathway. Oncotarget, 6, 14191-14208. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yoo, B.K., Emdad, L., Su, Z.Z., Villanueva, A., Chiang, D.Y., Mukho-padhyay, N.D., Mills, A.S., Waxman, S., Fisher, R.A., Llovet, J.M., Fisher, P.B. and Sarkar, D. (2009) Astrocyte Elevated Gene-1 Regulates Hepatocellular Carcinoma Development and Progression. Journal of Clinical Investigation, 119, 465-477. [Google Scholar] [CrossRef]
|
|
[15]
|
Li, S., Wu, T., Zhang, D., Sun, X. and Zhang, X. (2020) The Long Non-Coding RNA HCG18 Promotes the Growth and Invasion of Colorectal Cancer Cells through Sponging MiR-1271 and Upregulating MTDH/Wnt/β-Catenin. Clinical and Experimental Pharmacology and Physiology, 47, 703-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Han, Y.L., Luo, D., Habaxi, K., Tayierjiang, J., Zhao, W., Wang, W., Ai-kebaier, W. and Wang, L. (2022) COL5A2 Inhibits the TGF-β and Wnt/β-Catenin Signaling Pathways to Inhibit the Invasion and Metastasis of Osteosarcoma. Frontiers in Oncology, 12, Article ID: 813809. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Guo, H., Peng, J., Hu, J., Chang, S., Liu, H., Luo, H., Chen, X., Tang, H. and Chen, Y. (2021) BAIAP2L2 Promotes the Proliferation, Migration and Invasion of Osteosarcoma Associated with the Wnt/β-Catenin Pathway. Journal of Bone Oncology, 31, Article ID: 100393. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, D., Han, S., Pan, X., Li, H., Zhao, H., Gao, X. and Wang, S. (2022) EFEMP1 Binds to STEAP1 to Promote Osteosarcoma Proliferation and Invasion via the Wnt/β-Catenin and TGF-β/Smad2/3 Signal Pathways. Journal of Bone Oncology, 37, Article ID: 100458. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xie, W., Chang, W., Wang, X., Liu, F., Wang, X., Yuan, D. and Zhang, Y. (2022) Allicin Inhibits Osteosarcoma Growth by Pro-moting Oxidative Stress and Autophagy via the Inactivation of the LncRNA MALAT1-MiR-376a-Wnt/β-Catenin Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4857814. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liang, K., Liao, L., Liu, Q., Ouyang, Q., Jia, L. and Wu, G. (2021) Mi-croRNA-377-3p Inhibits Osteosarcoma Progression by Targeting CUL1 and Regulating Wnt/β-Catenin Signaling Pathway. Clinical and Translational Oncology, 23, 2350-2357. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Son, Y., Cheong, Y.K., Kim, N.H., Chung, H.T., Kang, D.G. and Pae, H.O. (2011) Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? Journal of Signal Transduction, 2011, Article ID: 792639. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, X.H., Zhang, S.J., Hu, Q.B., Song, X.Y. and Pan, W. (2019) Retracted: Effects of MicroRNA-494 on Proliferation, Migration, Invasion, and Apoptosis of Medulloblastoma Cells by Mediating C-Myc through the P38 MAPK Signaling Pathway. Journal of Cellular Biochemistry, 120, 2594-2606. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhu, Q., Li, K., Li, H., Han, F., Tang, Z. and Wang, Z. (2022) Ketamine Induced Bladder Fibrosis through MTDH/P38 MAPK/EMT Pathway. Frontiers in Pharmacology, 12, Article ID: 743682. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Beird, H.C., Bielack, S.S., Flanagan, A.M., Gill, J., Heymann, D., Jane-way, K.A., Livingston, J.A., Roberts, R.D., Strauss, S.J. and Gorlick, R. (2022) Osteosarcoma. Nature Reviews Disease Pri-mers, 8, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ottaviani, G. and Jaffe, N. (2009) The Epidemiology of Osteosarcoma. Cancer Research and Treatment, 152, 3-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hansen, M.F., Seton, M. and Merchant, A. (2006) Osteosarcoma in Paget’s Disease of Bone. Journal of Bone and Mineral Research, 21, 58-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tucker, M.A., D’Angio, G.J., Boice, J.D., Strong, L.C., Li, F.P., Stovall, M., Stone, B.J., Green, D.M., Lombardi, F., Newton, W., et al. (1987) Bone Sarcomas Linked to Radiotherapy and Chemotherapy in Children. The New England Journal of Medicine, 317, 588-593. [Google Scholar] [CrossRef]
|
|
[28]
|
Jafari, F., Javdansirat, S., Sanaie, S., Naseri, A., Shamekh, A., Rostamzadeh, D. and Dolati, S. (2020) Osteosarcoma: A Comprehensive Review of Management and Treatment Strategies. Annals of Diagnostic Pathology, 49, Article ID: 151654. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Czarnecka, A.M., Synoradzki, K., Firlej, W., Bartnik, E., Sobczuk, P., Fiedorowicz, M., Grieb, P. and Rutkowski, P. (2020) Molecular Biology of Osteosarcoma. Cancers (Basel), 12, Article No. 2130. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
De Azevedo, J.W.V., De Medeiros Fernandes, T.A.A., Fernandes, J.V., De Azevedo, J.C.V., Lanza, D.C.F., Bezerra, C.M., Andrade, V.S., De Araújo, J.M.G. and Fernandes, J.V. (2020) Biology and Pathogenesis of Human Osteosarcoma. Oncology Letters, 19, 1099-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Walkley, C.R., Qudsi, R., Sankaran, V.G., Perry, J.A., Gostissa, M., Roth, S.I., Rodda, S.J., Snay, E., Dunning, P., Fahey, F.H., Alt, F.W., McMahon, A.P. and Orkin, S.H. (2008) Conditional Mouse Osteosarcoma, Dependent on P53 Loss and Potentiated by Loss of Rb, Mimics the Human Disease. Genes & Development, 22, 1662-1676. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Han, G., Wang, Y. and Bi, W. (2012) C-Myc Overexpression Promotes Osteo-sarcoma Cell Invasion via Activation of MEK-ERK Pathway. Oncology Research, 20, 149-156. [Google Scholar] [CrossRef]
|
|
[33]
|
Meng, C.Y., Zhao, Z.Q., Bai, R., Zhao, W., Wang, Y.X., Xue, H.Q., Sun, L., Sun, C., Feng, W. and Guo, S.B. (2020) MicroRNA-22 Mediates the Cisplatin Resistance of Osteosarcoma Cells by Inhibiting Autophagy via the PI3K/Akt/MTOR Pathway. Oncology Reports, 43, 1169-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wu, Y., Xie, Z., Chen, J., Chen, J., Ni, W., Ma, Y., Huang, K., Wang, G., Wang, J., Ma, J., Shen, S. and Fan, S. (2019) Circular RNA CircTADA2A Promotes Osteosarcoma Progression and Metasta-sis by Sponging MiR-203a-3p and Regulating CREB3 Expression. Molecular Cancer, 18, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Orentas, R.J., Yang, J.J., Wen, X., Wei, J.S., Mackall, C.L. and Khan, J. (2012) Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers. Frontiers in Oncolo-gy, 2, Article No. 194. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tang, J., Shen, L., Yang, Q. and Zhang, C. (2014) Overexpression of Metadherin Mediates Metastasis of Osteosarcoma by Regulating Epithelial-Mesenchymal Transition. Cell Proliferation, 47, 427-434. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, F., Ke, Z.F., Sun, S.J., Chen, W.F., Yang, S.C., Li, S.H., Mao, X.P. and Wang, L.T. (2011) Oncogenic Roles of Astrocyte Elevated Gene-1 (AEG-1) in Osteosarcoma Progression and Prog-nosis. Cancer Biology & Therapy, 12, 539-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Guo, T. and Pan, G. (2018) MicroRNA-136 Functions as a Tumor Suppressor in Osteosarcoma via Regulating Metadherin. Cancer Biomarkers, 22, 79-87. [Google Scholar] [CrossRef]
|
|
[39]
|
Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in Cancer and Other Diseas-es. Nature, 407, 249-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, C., Li, R., Song, H., Wang, D., Feng, T., Yu, X., Zhao, Y., Liu, J., Yu, X., Wang, Y. and Geng, J. (2011) Significance of AEG-1 Expression in Correlation with VEGF, Microvessel Density and Clinico-pathological Characteristics in Triple-Negative Breast Cancer. Journal of Surgical Oncology, 103, 184-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, S., Li, G., Liu, C., Lu, S., Jing, Q., Chen, X., Zheng, H., Ma, H., Zhang, D., Ren, S., Shen, Z., Wang, Y., Lu, Z., Huang, D., Tan, P., Chen, J., Zhang, X., Qiu, Y. and Liu, Y. (2020) MiR-30e-5p Repress-es Angiogenesis and Metastasis by Directly Targeting AEG-1 in Squamous Cell Carcinoma of the Head and Neck. Cancer Sci-ence, 111, 356-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ding, Q., Chen, Y., Dong, S., Xu, X., Liu, J., Song, P., Yu, C. and Ma, Z. (2018) Astrocyte Elevated Gene-1 Is Overexpressed in Non-Small-Cell Lung Cancer and Associated with Increased Tumour Angio-genesis. Interdisciplinary CardioVascular and Thoracic Surgery, 26, 395-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yan, J.J., Zhang, Y.N., Liao, J.Z., Ke, K.P., Chang, Y., Li, P.Y., Wang, M., Lin, J.S. and He, X.X. (2015) MiR-497 Suppresses Angiogenesis and Metastasis of Hepatocellular Carcinoma by Inhibiting VEGFA and AEG-1. Oncotarget, 6, 29527-29542. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Long, M., Dong, K., Gao, P., Wang, X., Liu, L., Yang, S., Lin, F., Wei, J. and Zhang, H. (2013) Overexpression of Astrocyte-Elevated Gene-1 Is Associated with Cervical Carcinoma Progression and Angiogenesis. Oncology Reports, 30, 1414-1422. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, L., Lv, Z., Xu, J., Chen, C., Ge, Q., Li, P., Wei, D., Wu, Z. and Sun, X. (2018) MicroRNA-134 Inhibits Osteosarcoma Angiogenesis and Proliferation by Targeting the VEGFA/VEGFR1 Pathway. FEBS Journal, 285, 1359-1371. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dongre, A. and Weinberg, R.A. (2019) New Insights into the Mechanisms of Ep-ithelial-Mesenchymal Transition and Implications for Cancer. Nature Reviews Molecular Cell Biology, 20, 69-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sharili, A.S., Allen, S., Smith, K., Hargreaves, J., Price, J. and McGonnell, I. (2011) Expression of Snail2 in Long Bone Osteosarcomas Correlates with Tumour Malignancy. Tumor Biology, 32, 515-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shen, A., Zhang, Y., Yang, H., Xu, R. and Huang, G. (2012) Overex-pression of ZEB1 Relates to Metastasis and Invasion in Osteosarcoma. Journal of Surgical Oncology, 105, 830-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
El-Ashmawy, N.E., El-Zamarany, E.A., Khedr, E.G. and Abo-Saif, M.A. (2019) Activation of EMT in Colorectal Cancer by MTDH/NF-κB P65 Pathway. Molecular and Cellular Biochemistry, 457, 83-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
He, W., He, S., Wang, Z., Shen, H., Fang, W., Zhang, Y., Qian, W., Lin, M., Yuan, J., Wang, J., Huang, W., Wang, L. and Ke, Z. (2015) Astrocyte Elevated Gene-1(AEG-1) Induces Epitheli-al-Mesenchymal Transition in Lung Cancer through Activating Wnt/β-Catenin Signaling. BMC Cancer, 15, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Yin, Q., Han, Y., Zhu, D., Li, Z., Shan, S., Jin, W., Lu, Q. and Ren, T. (2018) MiR-145 and MiR-497 Suppress TGF-β-Induced Epithelial-Mesenchymal Transition of Non-Small Cell Lung Cancer by Targeting MTDH. Cancer Cell International, 18, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhu, K., Dai, Z., Pan, Q., Wang, Z., Yang, G.H., Yu, L., Ding, Z.B., Shi, G.M., Ke, A.W., Yang, X.R., Tao, Z.H., Zhao, Y.M., Qin, Y., Zeng, H.Y., Tang, Z.Y., Fan, J. and Zhou, J. (2011) Metadherin Promotes Hepatocellular Carcinoma Metastasis through Induction of Epithelial-Mesenchymal Transition. Clinical Cancer Research, 17, 7294-7302. [Google Scholar] [CrossRef]
|
|
[54]
|
Tan, H., Zhu, G., She, L., Wei, M., Wang, Y., Pi, L., Chen, C., Zhang, D., Tan, P., Chen, J., Huang, D., Tian, Y., Liu, Y. and Zhang, X. (2017) MiR-98 Inhibits Malignant Progression via Targeting MTDH in Squamous Cell Carcinoma of the Head and Neck. American Journal of Cancer Research, 7, 2554-2565.
|
|
[55]
|
Hu, G., Chong, R.A., Yang, Q., Wei, Y., Blanco, M.A., Li, F., Reiss, M., Au, J.L., Haffty, B.G. and Kang, Y. (2009) MTDH Activation by 8q22 Genomic Gain Promotes Chemoresistance and Metastasis of Poor-Prognosis Breast Cancer. Cancer Cell, 15, 9-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhang, J., Zhang, Y., Liu, S., Zhang, Q., Wang, Y., Tong, L., Chen, X., Ji, Y., Shang, Q., Xu, B., Chu, M. and Wei, L. (2013) Metadherin Confers Chemoresistance of Cervical Cancer Cells by Inducing Autophagy and Activating ERK/NF-κB Pathway. Tumor Biology, 34, 2433-2440. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Pei, G., Luo, M., Ni, X., Wu, J., Wang, S., Ma, Y. and Yu, J. (2018) Autophagy Facilitates Metadherin-Induced Chemotherapy Resistance through the AMPK/ATG5 Pathway in Gastric Cancer. Cellular Physiology and Biochemistry, 46, 847-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Li, Y.H., Xu, C.L., He, C.J., Pu, H.H., Liu, J.L. and Wang, Y. (2020) CircMTDH.4/MiR-630/AEG-1 Axis Participates in the Regulation of Proliferation, Migration, Invasion, Chemoresistance, and Radioresistance of NSCLC. Molecular Carcinogenesis, 59, 141-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Li, J., Chen, Y., Zhao, J., Kong, F. and Zhang, Y. (2011) MiR-203 Reverses Chemoresistance in P53-Mutated Colon Cancer Cells through Downregulation of Akt2 Expression. Cancer Letters, 304, 52-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ward, A., Balwierz, A., Zhang, J.D., Küblbeck, M., Pawitan, Y., Hielscher, T., Wiemann, S. and Sahin, Ö. (2013) Re-Expression of MicroRNA-375 Reverses both Tamoxifen Resistance and Accompanying EMT-Like Properties in Breast Cancer. Oncogene, 32, 1173-1182. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wang, P., Zhao, Z.Q., Guo, S.B., Yang, T.Y., Chang, Z.Q., Li, D.H., Zhao, W., Wang, Y.X., Sun, C., Wang, Y. and Feng, W. (2019) Roles of MicroRNA-22 in Suppressing Proliferation and Promoting Sen-sitivity of Osteosarcoma Cells via Metadherin-Mediated Autophagy. Orthopaedic Surgery, 11, 285-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
王存硕, 王帅, 薛海滨, 罗小波. 骨肉瘤治疗研究进展[J]. 标记免疫分析与临床, 2022, 29(10): 1789-1793. [Google Scholar] [CrossRef]
|
|
[63]
|
Wan, J.L., Wang, B., Wu, M.L., Li, J., Gong, R.M., Song, L.N., Zhang, H.S., Zhu, G.Q., Chen, S.P., Cai, J.L., Xing, X.X., Wang, Y.D., Yang, Y., Cai, C.Z., Huang, R., Liu, H. and Dai, Z. (2022) MTDH Antisense Oligonucleotides Reshape the Immunosuppressive Tumor Microenvironment to Sensitize Hepatocellular Carcinoma to Immune Checkpoint Blockade Therapy. Cancer Letters, 541, Article ID: 215750. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Shen, M., Xie, S., Rowicki, M., Michel, S., Wei, Y., Hang, X., Wan, L., Lu, X., Yuan, M., Jin, J.F., Jaschinski, F., Zhou, T., Klar, R. and Kang, Y. (2021) Therapeutic Targeting of Metadherin Sup-presses Colorectal and Lung Cancer Progression and Metastasis. Cancer Research, 81, 1014-1025. [Google Scholar] [CrossRef]
|
|
[65]
|
Shen, M., Smith, H.A., Wei, Y., Jiang, Y.Z., Zhao, S., Wang, N., Rowicki, M., Tang, Y., Hang, X., Wu, S., Wan, L., Shao, Z.M. and Kang, Y. (2022) Pharmacological Disruption of the MTDH-SND1 Complex Enhances Tumor Antigen Presentation and Synergizes with Anti-PD-1 Therapy in Metastatic Breast Cancer. Nature Cancer, 3, 60-74. [Google Scholar] [CrossRef] [PubMed]
|