|
[1]
|
浦婷, 王晓明, 张爱军. 巨噬细胞极化在自身免疫病中的研究进展[J]. 中国医学工程, 2023, 31(11): 74-80. [Google Scholar] [CrossRef]
|
|
[2]
|
Bashir, S., Sharma, Y., Elahi, A., et al. (2016) Mac-rophage Polarization: The Link between Inflammation and Related Diseases. Inflammation Research, 65, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
刘利萍, 张焱皓, 李茂, 等. 调控巨噬细胞极化的相关信号通路及其调节机制研究进展[J]. 中国免疫学杂志, 2021, 37(6): 747-753.
|
|
[4]
|
Tang, J., Chen, X.X. and Han, Z.H. (2019) Research Progress of Macrophage Polarization and Its Regulation. Journal of Translational Medicine, 8, 373-376.
|
|
[5]
|
陈伟杰, 程苕莼, 刘一村, 等. 白细胞介素-34对人外周血单核细胞来源的巨噬细胞极化和迁移能力的影响[J]. 新乡医学院学报, 2024, 41(1): 8-12.
|
|
[6]
|
Chisnakov, D.A., Bobryshev, Y.V., Nikiforov, N.G., et al. (2015) Macrophage Phenotypic Plasticity in Atherosclerosis: The Associated Features and the Peculiarities of the Ex-pression of Inflammatory Genes. International Journal of Cardiology, 184, 436-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
彭逸伦, 李杨, 王晓桃. 多发性骨髓瘤细胞通过PI3K/AKT信号通路促进M2巨噬细胞极化的机制研究[J]. 中国全科医学, 2024, 27(8): 978-984+994.
|
|
[8]
|
Chen, H., Shi, H., Uu, Y., et al. (2018) Activation of Corticotropin-Releasing Factor Receptor 1 Aggravates Dextran Sodium Sul-phate-Induced Colitis in Mice by Promoting M1 Macrophage Polarization. Molecular Medicine Reports, 17, 234-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Levi, B. (2017) Macrophages Take Rheumatoid Arthritis up a “Notch”. Science Translational Medicine, 9, Eaan3022. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bai, X., Zhang, J., Cao, M., et al. (2018) MicroRNA-146a Pro-tects against LPS-Induced Organ Damage by Inhibiting Notch1 in Macrophage. International Immunopharmacology, 63, 220-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
葛叡扬, 倪璨, 杨琨, 等. 巨噬细胞极化在牙周炎发病及治疗中的作用[J]. 中国组织工程研究, 2024, 28(20): 3246-3251.
|
|
[12]
|
Li, S.D., Ma, M., Li, H., et al. (2017) Cancer Gene Pm6ling in Non-Small Cell Lung Cancers Reveals Activating Mutations in JAK2 and JAK3 with Therapeutic Im-plications. Genome Medicine, 9, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Li, L., Wan, G.W., Han, B., et al. (2018) Echinacoside Alleviated LPS-Induced Cell Apoptosis and Inflammation in Rat Intestine Epithelial Cells by Inhibiting the mTOR/STAT3 Pathway. Biomedicine & Pharmacotherapy, 104, 622-628. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liang, Y.B., Tang, H., Chen, Z.B., et al. (2017) Downregulated SOCS1 Expression Activates the JAK1/STAT1 Pathway and Pro-motes Polarization of Macrophages into M1 Type. Molecular Medicine Reports, 16, 6405-6411. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
贝颖, 李文靖, 李美运, 等. 普鲁士蓝纳米颗粒促进糖尿病皮肤创面愈合[J]. 中国组织工程研究, 2024, 28(10): 1526-1532.
|
|
[16]
|
Fruman, D.A., Chiu, H., Hopkins, B.D., et al. (2017) The P13K Pathway in Human Disease. Cell, 170, 605-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Linton, M.F., Moslehi, J.J. and Babaev, V.R. (2019) Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis. International Journal of Molecular Sciences, 20, Article No. 2073. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
邓锐, 黄科铭, 罗建, 等. 血红素氧合酶1介导阿托伐他汀在巨噬细胞极化和胆固醇蓄积中的作用[J]. 中国组织工程研究, 2024, 28(1): 62-67.
|
|
[19]
|
Ohashi, E., Kohno, K., Arai, N., et al. (2019) Adenosine N1-Oxide Exerts Anti-Inflammatory Effects through the PI3K/Akt/GSK-3β Signaling Path-way and Promotes Osteogenic and Adipocyte Differentiation. Biological and Pharmaceutical Bulletin, 42, 968-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, L., Zhu, X., Zhao, T., et al. (2019) Sirt1 Ameliorates Monosodi-um Urate Crystal-Induced Inflammation by Altering Macrophage Polarization via the PI3K/Akt/STAT6 Pathway. Rheu-matology (Oxford), 58, 1674-1683. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Oh, J., Riek, A.E., Zhang, R.M., et al. (2018) Deletion of JNK2 Prevents Vitamin-D-Deficiency-Induced Hypertension and Atherosclerosis in Mice. The Journal of Steroid Biochemistry and Molecular Biology, 177, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tafesh-Edwards, G. and Eleftherianos, I. (2020) JNK Signaling in Drosophila Immunity and Homeostasis. Immunology Letters, 226, 7-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sammons, R.M., Perry, N.A. and Li, Y. (2019) A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation. ACS Chemical Bi-ology, 14, 1183-1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
杨雨晴, 陈志宇. 早期短暂M1巨噬细胞在骨组织工程中的作用及应用[J]. 中国组织工程研究, 2024, 28(4): 594-601.
|
|
[25]
|
Xu, W., Zhao, X., Daha, M.R., et al. (2013) Re-versible Differentiation of Pro- and Anti-Inflammatory Macrophages. Molecular Immunology, 53, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hart, A.L., Al-Hassi, H.O., Rigby, R.J., et al. (2005) Charac-teristics of Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Gastroenterology, 129, 50-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Isidro, R.A. and Appleyard, C.B. (2016) Colonic Macrophage Polarization in Homeostasis, Inflammation, and Cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G59-G73. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Qualls, J.E. (2006) Suppression of Experimental Colitis by Intestinal Mononuclear Phagocytes. Journal of Leukocyte Biology, 80, 802-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mowat, A.M. and Bain, C.C. (2011) Mucosal Macrophages in Intestinal Homeostasis and Inflammation. Journal of Innate Immunity, 3, 550-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhou, X., Wang, S., et al. (2019) YAP Aggravates Inflammatory Bowel Disease by Regulating M1/M2 Macrophage Polarization and Gut Microbial Homeostasis. Cell Reports, 27, 1176-1189. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
刘艺, 刘源, 孙志其, 等. 中药及有效成分靶向M1/M2巨噬细胞极化平衡治疗炎症性肠病的研究进展[J]. 中国实验方剂学杂志, 2024, 30(2): 276-286. [Google Scholar] [CrossRef]
|
|
[32]
|
Jang, S.E. and Min, S.W. (2020) Amelioration of Colitis in Mice by Leuconostoc lactis EJ-1 by M1 to M2 Macrophage Polarization. Microbiology and Immunology, 64, 133-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tang, Y., Shi, Y., Gao, Y., et al. (2019) Oxytocin System Alleviates Intestinal Inflammation by Regulating Macrophages Polarization in Experimental Colitis. Clinical Science, 133, 1977-1992. [Google Scholar] [CrossRef]
|
|
[34]
|
Liu, Y., Liu, X., Hua, W., et al. (2018) Berberine Inhibits Macrophage M1 Polarization via AKT1/SOCS1/NF-κB Signaling Pathway to Protect against DSS-Induced Colitis. In-ternational Immunopharmacology, 57, 121-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhu, W., Jin, Z., Yu, J., et al. (2016) Baicalin Ameliorates Ex-perimental Inflammatory Bowel Disease through Polarization of Macrophages to an M2 Phenotype. International Im-munopharmacology, 35, 119-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
韩拓, 李盈, 李成, 等. 铁死亡的发生与调控机制及与动脉粥样硬化研究进展[J/OL]. 心脏杂志, 2024(1): 71-77.
http://kns.cnki.net/kcms/detail/61.1268.r.20231012.1005.016.html
|
|
[37]
|
Wang, X,P., Wu, L.L., Li, L.L., et al. (2020) Protective Effect of Alcohol Extract of Poplar On Immune Liver Injury Induced by Concanavalin A. Journal of Xi’an Jiaotong University (Medical Edition), 41, 157-160. (In Chinese)
|
|
[38]
|
Wang, Y., Guo, X., Jiao, G., et al. (2019) Sple-nectomy Promotes Macrophage Polarization in a Mouse Model of Concanavalin A- (ConA-) Induced Liver Fibrosis. BioMed Research International, 2019, Article ID: 5756189. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
刘畅, 李文倩, 魏欣妍, 等. MiR-141-3p、PD-L1及巨噬细胞在子宫内膜异位症中的表达及相关性研究[J]. 生物医学转化, 2023, 4(4): 72-80.
|
|
[40]
|
Li, R.T., Shang, Y., Hu, X.M., et al. (2020) ATP/P2X7r Axis Mediates the Pathological Process of Allergic Asthma by Inducing M2 Polarization of Alveolar Macrophages. Experimental Cell Research, 386, Article ID: 111708. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
刘沙, 夏毅, 季峰. 靶向巨噬细胞的纳米粒在炎症性肠病诊治中的应用进展[J]. 浙江大学学报(医学版), 2023, 52(6): 785-794.
|
|
[42]
|
Cui, Z., Feng, Y., et al. (2020) Activation of Aryl Hydrocarbon Receptor (AhR) in Mesenchymal Stem Cells Modulates Macrophage Polarization in Asthma. Journal of Immunotoxicology, 17, 21-30. [Google Scholar] [CrossRef]
|
|
[43]
|
Huang, P.K., Wei, S.S., Huang, W.H., et al. (2019) Hydro-gen Gas Inhalation Enhances Alveolar Macrophage Phagocytosis in an Ovalbumin-Induced Asthma Model. International Immunopharmacology, 74, Article ID: 105646. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Van Dan Magsar, B., Youm, Y.H., Ravussin, A., et al. (2011) The NLRP3 Inflammasome Instigates Obesity-Induced Inflammation and Insulin Resistance. Nature Medicine, 17, 179-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Lefsky, J.M. and Glass, C.K. (2010) Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 72, 219-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Song, L., Kim, D.S., Gou, W., et al. (2020) GRP94 Regulates M1 Macrophage Polarization and Insulin Resistance. American Journal of Physiology-Endocrinology and Metabolism, 318, E1004-E1013. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gambaro, S.E., Zubiria, M.G., Glordano, A.P., et al. (2020) Spexin Improves Adipose Tissue Inflammation and Macrophage Recruitment in Obese Mice. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1865, Article ID: 158700. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Stapleton, K., Das, S., Reddy, M.A., et al. (2020) Novel Long Noncoding RNA, Macrophage Inflammation-Suppressing Transcript (MIST), Regulates Macrophage Activation during Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 914-928. [Google Scholar] [CrossRef]
|