[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
|
[2]
|
Zhou, J., Sun, H., Wang, Z., et al. (2020) Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer, 9, 682-720. https://doi.org/10.1159/000509424
|
[3]
|
应倩, 汪媛. 肝癌流行现况和趋势分析[J]. 中国肿瘤, 2020, 29(3): 185-191.
|
[4]
|
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版) [J]. 中国实用外科杂志, 2022, 42(3): 241-273. https://doi.org/10.19538/j.cjps.issn1005-2208.2022.03.01
|
[5]
|
Rowe, I.A. and Sherman, M. (2016) Capitalising on Improved Rates of Diagnosis of Early Hepatocellular Carcinoma. Journal of Hepa-tology, 64, 260-261. https://doi.org/10.1016/j.jhep.2015.10.027
|
[6]
|
Raoul, J.L., Forner, A., Bolondi, L., Cheung, T.T., Kloeckner, R. and De Baere, T. (2019) Updated Use of TACE for Hepatocellular Carcinoma Treatment: How and When to Use It Based on Clinical Evidence. Cancer Treatment Reviews, 72, 28-36. https://doi.org/10.1016/j.ctrv.2018.11.002
|
[7]
|
Sieghart, W., Hucke, F. and Peck-Radosavljevic, M. (2015) Transarterial Chemoembolization: Modalities, Indication, and Patient Selection. Journal of Hepatology, 62, 1187-1195. https://doi.org/10.1016/j.jhep.2015.02.010
|
[8]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Im-ages Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://pubmed.ncbi.nlm.nih.gov/26579733/
|
[9]
|
Wu, M., Tan, H., Gao, F., et al. (2019) Predicting the Grade of Hepatocellular Carcinoma Based on Non-Contrast- Enhanced MRI Radiomics Signature. European Radiology, 29, 2802-2811. https://doi.org/10.1007/s00330-018-5787-2
|
[10]
|
Peng, J., Zhang, J., Zhang, Q., Xu, Y., Zhou, J. and Liu, L. (2018) A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion Risk in Hepatitis B Vi-rus-Related Hepatocellular Carcinoma. Diagnostic and Interventional Radiology, 24, 121-127. https://doi.org/10.5152/dir.2018.17467
|
[11]
|
Bakr, S., Echegaray, S., Shah, R., et al. (2017) Noninvasive Radiomics Signature Based on Quantitative Analysis of Computed Tomography Images as a Surrogate for Microvascular Invasion in Hepatocellular Carcinoma: A Pilot Study. Journal of Medical Imaging (Bellingham), 4, Article ID: 041303. https://doi.org/10.1117/1.JMI.4.4.041303
|
[12]
|
Hui, T.C.H., Chuah, T.K., Low, H.M. and Tan, C.H. (2018) Pre-dicting Early Recurrence of Hepatocellular Carcinoma with Texture Analysis of Preoperative MRI: A Radiomics Study. Clinical Radiology, 73, 1056.E11-1056.E16.
https://doi.org/10.1016/j.crad.2018.07.109
|
[13]
|
Zhou, Y., He, L., Huang, Y., et al. (2017) CT-Based Radiomics Signature: A Potential Biomarker for Preoperative Prediction of Early Recurrence in Hepatocellular Carcinoma. Ab-dominal Radiology (NY), 42, 1695-1704.
https://doi.org/10.1007/s00261-017-1072-0
|
[14]
|
Gillies, R.J., Anderson, A.R., Gatenby, R.A. and Morse, D.L. (2010) The Biology Underlying Molecular Imaging in Oncology: From Genome to Anatome and Back Again. Clinical Radiology, 65, 517-521.
https://doi.org/10.1016/j.crad.2010.04.005
|
[15]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radi-omics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur J Cancer, 48(4, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
|
[16]
|
Parekh, V. and Jacobs, M.A. (2016) Radiomics: A New Application from Established Techniques. Expert Review of Precision Medicine and Drug Development, 1, 207-226. https://doi.org/10.1080/23808993.2016.1164013
|
[17]
|
Acharya, U.R., Hagiwara, Y., Sudarshan, V.K., Chan, W.Y. and Ng, K.H. (2018) Towards Precision Medicine: From Quantitative Imaging to Radiomics. Journal of Zhejiang Uni-versity-Science B, 19, 6-24.
https://doi.org/10.1631/jzus.B1700260
|
[18]
|
Espinasse, M., Pitre-Champagnat, S., Charmettant, B., et al. (2020) CT Texture Analysis Challenges: Influence of Acquisition and Reconstruction Parameters: A Comprehensive Review. Di-agnostics (Basel), 10, Article No. 258.
https://doi.org/10.3390/diagnostics10050258
|
[19]
|
Mali, S.A., Ibrahim, A., Woodruff, H.C., et al. (2021) Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. Journal of Personalized Medicine, 11, Article No. 842. https://doi.org/10.3390/jpm11090842
|
[20]
|
Gul, S., Khan, M.S., Bibi, A., Khandakar, A., Ayari, M.A. and Chowdhury, M.E.H. (2022) Deep Learning Techniques for Liver and Liver Tumor Segmentation: A Review. Computers in Biology and Medicine, 147, Article ID: 105620.
https://doi.org/10.1016/j.compbiomed.2022.105620
|
[21]
|
马金林, 邓媛媛, 马自萍. 肝脏肿瘤CT图像深度学习分割方法综述[J]. 中国图象图形学报, 2020, 25(10): 2024-2046.
|
[22]
|
Ma, Z., Tavares, J.M.R.S., Jorge, R.N. and Mascarenhas, T. (2010) A Review of Algorithms for Medical Image Segmentation and Their Applications to the Female Pelvic Cavity. Computer Methods in Biomechanics and Biomedical Engineering, 13, 235-246. https://doi.org/10.1080/10255840903131878
|
[23]
|
Cardenas, C.E., Yang, J., Anderson, B.M., Court, L.E. and Brock, K.B. (2019) Advances in Auto-Segmentation. Seminars in Radiation Oncology, 29, 185-197. https://doi.org/10.1016/j.semradonc.2019.02.001
|
[24]
|
鲁慧民, 薛涵, 王奕龙, 王贵增, 桑鹏程. 机器学习在影像组学分析中的应用综述[J]. 计算机工程与应用, 2023, 59(17): 22-34.
|
[25]
|
O’Sullivan, F., Roy, S., O’Sullivan, J., Vernon, C. and Eary, J. (2005) Incorporation of Tumor Shape into an Assessment of Spatial Heterogeneity for Human Sarcomas Imaged with FDG-PET. Biostatistics, 6, 293-301.
https://doi.org/10.1093/biostatistics/kxi010
|
[26]
|
Chalkidou, A., O’Doherty, M.J. and Marsden, P.K. (2015) False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLOS ONE, 10, e0124165. https://doi.org/10.1371/journal.pone.0124165
|
[27]
|
Peng, H., Long, F. and Ding, C. (2005) Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1238. https://doi.org/10.1109/TPAMI.2005.159
|
[28]
|
Alizadeh, B.B., Tabatabaei, Y.F., Shahidi, F., Mortazavi, S.A. and Mohebbi, M. (2017) Principle Component Analysis (PCA) for Investigation of Relationship between Population Dynamics of Microbial Pathogenesis, Chemical and Sensory Charac-teristics in Beef Slices Containing Tarragon Essential Oil. Microbial Pathogenesis, 105, 37-50.
https://doi.org/10.1016/j.micpath.2017.02.013
|
[29]
|
李寅乔, 张娟, 贾宁阳. 影像组学在肝细胞癌图像分割、鉴别诊断和预后评估中的应用进展[J]. 山东医药, 2023, 63(28): 99-102.
|
[30]
|
Guiot, J., Vaidyanathan, A., Deprez, L., et al. (2022) A Review in Radiomics: Making Personalized Medicine a Reality via Routine Imaging. Medicinal Research Reviews, 42, 426-440. https://doi.org/10.1002/med.21846
|
[31]
|
Ferreira, J., Koenigkam-Santos, M., Machado, C.V.B., et al. (2021) Radiomic Analysis of Lung Cancer for the Assessment of Patient Prognosis and Intratumor Heter-ogeneity. Radiologia Brasileira, 54, 87-93.
https://doi.org/10.1590/0100-3984.2019.0135
|
[32]
|
Tagliafico, A.S., Piana, M., Schenone, D., Lai, R., Massone, A.M. and Houssami, N. (2020) Overview of Radiomics in Breast Cancer Diagnosis and Prognostication. Breast, 49, 74-80. https://doi.org/10.1016/j.breast.2019.10.018
|
[33]
|
孙跃军, 白洪林, 王栋, 等. 术前T2磁共振影像组学在预测介入治疗大肝癌近期疗效的研究[J]. 介入放射学杂志, 2019, 28(11): 1036-1041.
|
[34]
|
Kim, J., Choi, S.J., Lee, S.H., Lee, H.Y. and Park, H. (2018) Predicting Survival Using Pretreatment CT for Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR American Journal of Roentgenology, 211, 1026-1034. https://doi.org/10.2214/AJR.18.19507
|
[35]
|
Meng, X.P., Wang, Y.C., Ju, S., et al. (2020) Radiomics Analysis on Multiphase Contrast-Enhanced CT: A Survival Prediction Tool in Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Frontiers in Oncology, 10, Article No. 1196. https://doi.org/10.3389/fonc.2020.01196
|
[36]
|
Chen, M., Cao, J., Hu, J., et al. (2021) Clinical-Radiomic Analysis for Pretreatment Prediction of Objective Response to First Transarterial Chemoembolization in Hepatocellular Carcinoma. Liver Cancer, 10, 38-51.
https://doi.org/10.1159/000512028
|
[37]
|
Peng, J., Huang, J., Huang, G. and Zhang, J. (2021) Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integra-tion of Radiomics and Deep Learning. Frontiers in Oncology, 11, Article ID: 730282. https://doi.org/10.3389/fonc.2021.730282
|
[38]
|
Ren, Q., Zhu, P., Li, C., et al. (2022) Pretreatment Computed To-mography-Based Machine Learning Models to Predict Outcomes in Hepatocellular Carcinoma Patients Who Received Combined Treatment of Trans-Arterial Chemoembolization and Tyrosine Kinase Inhibitor. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 872044.
https://doi.org/10.3389/fbioe.2022.872044
|
[39]
|
Chen, M., Kong, C., Qiao, E., et al. (2023) Multi-Algorithms Analysis for Pre-Treatment Prediction of Response to Transarterial Chemoembolization in Hepatocellular Carcinoma on Multiphase MRI. Insights Imaging, 14, Article No. 38. https://doi.org/10.1186/s13244-023-01380-2
|
[40]
|
Fu, S., Wei, J., Zhang, J., et al. (2019) Selection between Liver Resection versus Transarterial Chemoembolization in Hepatocel-lular Carcinoma: A Multicenter Study. Clinical and Translational Gastroenterology, 10, e00070.
https://doi.org/10.14309/ctg.0000000000000070
|