|
[1]
|
Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lym-phoma. The Lancet, 283, 702-703. [Google Scholar] [CrossRef]
|
|
[2]
|
Shannon-Lowe, C. and Rowe, M. (2014) Epstein Barr Virus Entry; Kissing and Conjugation. Current Opinion in Virology, 4, 78-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Vetsika, E.K. and Callan, M. (2004) Infectious Mononucleosis and Epstein-Barr Virus. Expert Reviews in Molecular Medicine, 6, 1-16. [Google Scholar] [CrossRef]
|
|
[4]
|
Cesarman, E. (2011) Gammaherpesvirus and Lymphoproliferative Disorders in Immunocompromised Patients. Cancer Letters, 305, 163-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ok, C.Y., Li, L. and Young, K.H. (2015) EBV-Driven B-Cell Lymphoproliferative Disorders: From Biology, Classification and Differential Diagnosis to Clinical Management. Ex-perimental & Molecular Medicine, 47, e132. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Thorley-Lawson, D.A., Hawkins, J.B., Tracy, S.I. and Shapiro, M. (2013) The Pathogenesis of Epstein-Barr Virus Persistent Infection. Current Opinion in Virology, 3, 227-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, Z., Wang, J., Zhang, Z. and Tang, F. (2019) Epstein-Barr Virus-Encoded Products Promote Circulating Tumor Cell Generation: A Novel Mechanism of Nasopharyngeal Carci-noma Metastasis. OncoTargets and Therapy, 12, 11793-11804. [Google Scholar] [CrossRef]
|
|
[8]
|
Iizasa, H., Nanbo, A., Nishikawa, J., Jinushi, M. and Yoshiyama, H. (2012) Epstein-Barr Virus (EBV)-Associated Gastric Carcinoma. Viruses, 4, 3420-3439. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Machón, C., Fàbrega-Ferrer, M., Zhou, D., Cuervo, A., Carrascosa, JL., Stuart, D.I., et al. (2019) Atomicstructure of the Epstein-Barr Virus Portal. Nature Communications, 10, Article No. 3891. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, H.P., Luo, M., Cao, Y.L., Lin, Y.X., Zhang, H., Zhang, X., et al. (2020) Structure of Epstein-Barr Virus Tegument Protein Complex BBRF2-BSRF1 Reveals Its Potential Role in Viral Envelopment. Nature Communications, 11, Article No. 5405. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, T., Wang, Y., Xu, Z., Zou, X., Wang, P., Ou, X., et al. (2019) Epstein-Barr Virus Tegument Protein BGLF2 Inhibits NF-κB Activity by Preventing P65 Ser536 Phosphoryla-tion. The FASEB Journal, 33, 10563-10576. [Google Scholar] [CrossRef]
|
|
[12]
|
Hutt-Fletcher, L.M. (2015) EBV Glycoproteins: Where Are We Now? Future Medicine, 10, 1155-1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kirschner, A.N., Sorem, J., Longnecker, R. and Jardetzky, T.S. (2009) Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry. Structure, 17, 223-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ohga, S., Nomura, A., Takada, H. and Hara, T. (2002) Immuno-logical Aspects of Epstein-Barr Virus Infection. Critical Reviews in Oncology/Hematology, 44, 203-215. [Google Scholar] [CrossRef]
|
|
[15]
|
Hutt-Fletcher, L.M. and Chesnokova, L.S. (2010) Integrins as Triggers of Epstein-Barr Virus Fusion and Epithelial Cell Infection. Virulence, 1, 395-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Inagaki, T., Sato, Y., Ito, J., Takaki, M., Okuno, Y., Yaguchi, M., et al. (2020) Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency during B-Cell Infection. Frontiers in Microbiology, 11, Article 575255. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tsurumi, T., Fujita, M. and Kudoh, A. (2005) Latent and Lytic Epstein-Barr Virus Replication Strategies. Reviews in Medical Virology, 15, 3-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Morscio, J. and Tousseyn, T. (2016) Recent Insights in the Pathogenesis of Post-Transplantation Lymphoproliferative Disorders. World Journal of Transplantation, 6, 505-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kempkes, B. and Robertson, E.S. (2015) Epstein-Barr Virus Latency: Current and Future Perspectives. Current Opinion in Virology, 14, 138-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Elgui De Oliveira, D., Müller-Coan, B.G. and Pagano, J.S. (2016) Viral Carcinogenesis beyond Malignant Transformation: EBV in the Progression of Human Cancers. Trends in Microbiology, 24, 649-664. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lupey-Green, L.N., Moquin, S.A., Martin, K.A., McDevitt, S.M., Hulse, M., Caruso, L.B., et al. (2017) PARP1 Restricts Epstein Barr Virus Lytic Reactivation by Binding the BZLF1 Promoter. Virology, 507, 220-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Dunmire, S.K., Verghese, P.S. and Balfour, H.H. (2018) Primary Epstein-Barr Virus Infection. Journal of Clinical Virology, 102, 84-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Takada, K. (1984) Cross-Linking of Cell Surface Immunoglobulins Induces Epstein-Barr Virus in Burkitt Lymphoma Lines. International Journal of Cancer, 33, 27-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kenney, S.C. and Mertz, J.E. (2014) Regulation of the Latent-Lytic Switch in Epstein-Barr Virus. Seminars in Cancer Biology, 26, 60-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Seo, M.D., Park, S.J., Kim, H.J. and Lee, B.J. (2007) Iden-tification of the WW Domain-Interaction Sites in the Unstructured N-Terminal Domain of EBV LMP 2A. FEBS Letters, 581, 65-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Incrocci, R., Hussain, S., Stone, A., Bieging, K., Alt, L.A.C., Fay, M.J., et al. (2015) Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A)-Mediated Changes in Fas Expression and Fas-Dependent Apoptosis: Role of Lyn/Syk Activation. Cellular Immunology, 297, 108-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ma, Y., Walsh, M.J., Bernhardt, K., Ashbaugh, C.W., Trudeau, S.J., Ashbaugh, I.Y., et al. (2017) CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host Microbe, 21, 580-591.E7. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Murata, T. and Tsurumi, T. (2014) Switching of EBV Cycles between Latent and Lytic States. Reviews in Medical Virology, 24, 142-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hatayama, Y., Hashimoto, Y. and Motokura, T. (2020) Frequent Co-Reactivation of Epstein-Barr Virus in Patients with Cytomegalovirus Viremia under Immunosuppressive Therapy and/or Chemotherapy. Journal of International Medical Research, 48, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Parums, D.V. (2021) Editorial: Tocilizumab, a Humanized Therapeutic IL-6 Receptor (IL-6R) Monoclonal Antibody, and Future Combination Therapies for Severe COVID-19. Medical Science Monitor, 27, e933973. [Google Scholar] [CrossRef]
|
|
[31]
|
Venkiteshwaran, A. (2009) Tocilizumab. mAbs, 1, 432-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nishimoto, N., Yoshizaki, K., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., et al. (2004) Treatment of Rheumatoid Arthritis with Humanized Anti-Interleukin-6 Receptor Antibody: A Multicenter, Double-Blind, Placebo-Controlled Trial. Arthritis & Rheumatology, 50, 1761-1769. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Boninsegna, S., Storato, S., Riccardi, N., Soprana, M., Oliboni, E., Tamarozzi, F., et al. (2021) Epstein-Barr Virus (EBV) Acute Acalculous Cholecystitis in an Immunocompromised Adult Patient: A Case Report and a Literature Review of a Neglected Clinical Presentation. Journal of Preventive Medicine and Hygiene, 62, E237-E242.
|
|
[34]
|
Smolen, J.S., Beaulieu, A., Rubbert-Roth, A., Ramos-Remus, C., Rovensky, J., Alecock, E., et al. (2008) Effect of Interleukin-6 Receptor Inhibition with Tocilizumab in Patients with Rheumatoid Arthritis (OPTION Study): A Double-Blind, Placebo-Controlled, Randomised Trial. The Lancet, 371, 987-997. [Google Scholar] [CrossRef]
|
|
[35]
|
Ramshaw, I.A., Ramsay, A.J., Karupiah, G., Rolph, M.S., Mahalingam, S. and Ruby, J.C. (1997) Cytokines and Immunity to Viral Infections. Immunological Reviews, 159, 119-135. [Google Scholar] [CrossRef]
|
|
[36]
|
Bauer, G. (2001) Simplicity through Com-plexity: Immunoblot with Recombinant Antigens as the New Gold Standard in Epstein-Barr Virus Serology. Clinical Laboratory, 47, 223-230.
|
|
[37]
|
Straus, S.E., Tosato, G., Armstrong, G., Lawley, T., Preble, O.T., Henle, W., et al. (1985) Persisting Illness and Fatigue in Adults with Evidence of Epstein-Barr Virus Infection. Annals of Internal Med-icine, 102, 7-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Stowe, R.P., Pierson, D.L., Feeback, D.L. and Barrett, A.D. (2000) Stress-Induced Reactivation of Epstein-Barr Virus in Astronauts. Neuroimmunomodulation, 8, 51-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Schaade, L., Kleines, M. and Häusler, M. (2001) Application of Vi-rus-Specific Immunoglobulin M (IgM), IgG, and IgA Antibody Detection with a Polyantigenic Enzyme-Linked Immunosorbent Assay for Diagnosis of Epstein-Barr Virus Infections in Childhood. Journal of Clinical Microbiology, 39, 3902-3905. [Google Scholar] [CrossRef]
|
|
[40]
|
Lam, W.K.J., Jiang, P., Chan, K.C.A., Cheng, S.H., Zhang, H., Peng, W., et al. (2018) Sequencing-Based Counting and Size Profiling of Plasma Epstein-Barr Virus DNA Enhance Population Screening of Nasopharyngeal Carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 115, E5115-E5124. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chan, K.C.A., Woo, J.K.S., King, A., Zee, B.C.Y., Lam, W.K.J., Chan, S.L., et al. (2017) Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. The New England Journal of Medicine, 377, 513-522. [Google Scholar] [CrossRef]
|
|
[42]
|
Pagano, J.S., Whitehurst, C.B. and Andrei, G. (2018) Antiviral Drugs for EBV. Cancers, 10, Article 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Drosu, N.C., Edelman, E.R. and Housman, D.E. (2020) Tenofovir Prodrugs Potently Inhibit Epstein-Barr Virus Lytic DNA Replication by Targeting the Viral DNA Polymerase. Pro-ceedings of the National Academy of Sciences of the United States of America, 117, 12368-12374. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Thomé, M.P., Borde, C., Larsen, A.K., Henriques, J.A.P., Lenz, G., Escargueil, A.E., et al. (2019) Dipyridamole as a New Drug to Prevent Epstein-Barr Virus Reactivation. Antiviral Re-search, 172, Article ID: 104615. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Watanabe, S.M., Ehrlich, L.S., Strickland, M., Li, X., Soloveva, V., Goff, A.J., et al. (2020) Selective Targeting of Virus Replication by Proton Pump Inhibitors. Scientific Reports, 10, Article No. 4003. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Jafarzadeh, A., Nemati, M., Khorramdelazad, H. and Hassan, Z.M. (2019) Immunomodulatory Properties of Cimetidine: Its Therapeutic Potentials for Treatment of Immune-Related Diseases. International Immunopharmacology, 70, 156-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Pantziarka, P., Bouche, G., Meheus, L., Sukhatme, V. and Sukhatme, V.P. (2014) Repurposing Drugs in Oncology (ReDO)—Cimetidine as an Anti-Cancer Agent. Ecancermedicalscience, 8, 485. [Google Scholar] [CrossRef] [PubMed]
|