|
[1]
|
Northway, W.H.J., Rosan, R.C. and Porter, D.Y. (1967) Pulmonary Disease Following Respirator Therapy of Hy-aline-Membrane Disease—Bronchopulmonary Dysplasia. The New England Journal of Medicine, 276, 357-368. [Google Scholar] [CrossRef]
|
|
[2]
|
Abman, S.H., Bancalari, E. and Jobe, A. (2017) The Evolution of Bronchopulmonary Dysplasia after 50 Years. American Journal of Respiratory and Critical Care Medicine, 195, 421-424. [Google Scholar] [CrossRef]
|
|
[3]
|
Bonadies, L., Zaramella, P., Porzionato, A., et al. (2020) Present and Future of Bronchopulmonary Dysplasia. Journal of Clinical Medicine, 9, Article 1539. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hwang, J.S. and Rehan, V.K. (2018) Recent Advances in Bronchopulmonary Dysplasia: Pathophysiology, Prevention, and Treatment. Lung, 196, 129-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lucia, J., Smith Karen, O., McKay Peter, P., Van Asperen, P.P., et al. (2010) Normal Development of the Lung and Premature Birth. Paediatric Respiratory Reviews, 11, 135-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Parad, R.B., Davis, J.M., Lo, J., et al. (2015) Pre-diction of Respiratory Outcome in Extremely Low Gestational Age Infants. Neonatology, 107, 241-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shrestha, D., Ye, G.X., Stabley, D., et al. (2021) Pulmonary Immune Cell Transcriptome Changes in Double-Hit Model of BPD Induced by Chorioamnionitis and Postnatal Hyperoxia. Pediatric Research, 90, 565-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhou, D., Shi, F., Xiong, Y., et al. (2019) Increased Serum Th2 Chemokine Levels Are Associated with Bronchopulmonary Dysplasia in Premature Infants. European Journal of Pediatrics, 178, 81-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ambalavanan, N., Carlo, W.A., D’Angio, C.T., et al. (2009) Cytokines Associated with Bronchopulmo Nary Dysplasia or Death in Extremely Low Birth Weight Infants. Pedi-atrics, 123, 1132-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ambalavanan, N., Van Meurs, K.P., Perritt, R., et al. (2008) Predictors of Death or Bronchopulmonary Dysplasia in Preterm Infant with Respiratory Failure. Journal of Perinatology, 28, 420-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Revhaug, C., Bik-Multanowski, M., Zasada, M., et al. (2019) Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings. Neonatology, 116, 269-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kumar, V.H.S., Wang, H.M. and Nielsen, L. (2018) Adaptive Im-mune Responses Are Altered in Adult Mice Following Neonatal Hyperoxia. Physiological Reports, 6, e13577. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cai, Y., Ma, F., Qu, L.H., et al. (2020) Weighted Gene Co-Expression Network Analysis of Key Biomarkers Associated with Bronchopulmonary Dysplasia. Frontiers in Genetics, 11, Article 539292. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rosen, D., Lee, J., Cuttitta, F., et al. (2006) Accelearted Thymic Maturation and Autorecative T Cells in Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 174, 75-83. [Google Scholar] [CrossRef]
|
|
[15]
|
Arora, S., Dev, K., Agarwal, B., et al. (2018) Macrophages: Their Role, Activation and Polarization in Pulmonary Diseases. Immunobiology, 223, 383-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Dong, P., Ma, L., Liu, L., et al. (2016) CD86+/CD206+, Diametrically Polarized Tumor-Associated Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis. In-ternational Journal of Molecular Sciences, 17, Article 320. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cheon, I.S., Son, Y, M., Jiang, L., et al. (2018) Neonatal Hy-peroxia Promotes Asthma-Like Features through IL-33—Dependent ILC2 Responses. Journal of Allergy and Clinical Immunology, 142, 1100-1112. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hirani, D., Alvira, C.M., Danopoulos, S., et al. (2022) Mac-rophage-Derived IL-6 Trans-Signalling as a Novel Target in the Pathogenesis of Bronchopulmonary Dysplasia. European Respiratory Journal, 59, Article ID: 2002248. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zou, X.L., Chen, Z.G., Zhang, T.T., et al. (2018) Th17/Treg Homeostasis, But Not Th1/Th2 Homeostasis, Is Implicated in Exacerbation of Human Bronchial Asthma. Therapeutics and Clinical Risk Management, 14, 1627-1636. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhao, P., Li, J., Tian, Y., et al. (2018) Restoring Th17/Treg Balance via Modulation of STAT3 and STAT5 Activation Contributes to the Amelioration of Chronic Obstructive Pulmonary Disease by Bufei Yishen Formula. Journal of Ethnopharmacology, 217, 152-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, H.X., Wang, K., Li, G.X., et al. (2016) Effects of Transcutaneous Acupoint Electrical Stimulation on the Imbalance of Th1, Th2, Th17 and Treg Cells Following Thoracotomy of Patients with Lung Cancer. Experimental and Therapeutic Medicine, 11, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Qu, X.Y., Yi, X., Zhong, H.Y., et al. (2023) Effect and Mecha-nism of Imbalance via Th9 Cells and Th17/Treg Cells in Inflammatory and Fibrotic Phases of Pulmonary Fibrosis in Mice. Biotechnology and Genetic Engineering Reviews. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhu, Y., Mi, L.L., Lu, H.Y., et al. (2023) ILC2 Regu-lates Hyperoxia-Induced Lung Injury via an Enhanced Th17 Cell Response in the BPD Mouse Model. BMC Pul-monary Medicine, 23, Article No. 188. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pagel, J., Twisselmann, N., Rausch, T.K., et al. (2020) In-creased Regulatory T Cells Precede the Development of Bronchopulmonary Dysplasia in Preterm Infants. Frontiers in Immunology, 11, Article 565257. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, Y.J., Zhang, X.L., Liu, J.X., et al. (2021) The As-sociation of γδ-T Cells with Bronchopulmonary Dysplasia in Premature Infants. Human Immunology, 82, 54-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Angusamy, S., Mansour, T., Abdulmageed, M., et al. (2018) Altered Thymocyte and T Cell Development in Neonatal Mice with Hyperoxia-Induced Lung Injury. Journal of Perinatal Medicine, 46, 441-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
张丹, 于晓岩, 富建华. 转化生长因子-β1诱导新生大鼠肺成纤维细胞增殖的细胞周期调控研究[J]. 中华实用儿科临床杂志, 2018, 33(14): 1102-1106.
|
|
[28]
|
Moreau, J.M., Velegraki, M., Bolyard, C., et al. (2022) Transforming Growth Factor-β1 in Regulatory T Cell Biology. Science Immunology, 7, eabi4613. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
林晴晴, 谭卉晗, 吴永芳, 等. 脐血TGF-β1、Treg细胞数量水平对早产儿支气管肺发育不良的预测价值[J]. 分子诊断与治疗杂志, 2020, 12(8): 1052-1055.
|
|
[30]
|
薛立军, 杜桂莲, 李思涛, 等. 脐血调节性T细胞检测在早产儿支气管肺发育不良中的预测价值[J]. 中华新生儿科杂志(中英文), 2019, 34(5): 353-357.
|
|
[31]
|
Halliday, H.L. (2008) Surfactants: Past, Present and Future. Journal of Perinatology, 28, S47-S56. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Awasthi, S., Madhusoodhanan, R. and Wolf, R. (2011) Surfactant Protein-A and Toll-Like Receptor-4 Modulate Immune Functions of Preterm Baboon Lung Dendritic Cell Precursor Cells. Cellular Immunology, 268, 87-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wright, J.R. (2005) Immunoregulatory Functions of Surfactant Proteins. Nature Reviews Immunology, 5, 58-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kunzmann, S., Wright, J.R., Steinhilber, W., et al. (2006) TGF-β1 in SP-A Preparations Influence Immune Suppressive Properties of SP-A on Human CD4+ T Lymphocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 291, L747-L756. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, D.Y., Wu, J., Zhang, X.Y. and Feng, Z.C. (2010) Ex-pression of IL-8, SP-A and TGF-β1 Inbronchoalveolar Lavage Fluid of Neonates with Bronchopulmonary Dys-plasia. Chinese Journal of Contemporary Pediatrics, 12, 444-446.
|
|
[36]
|
Bersani, I., Speer, C.P. and Kunzmann, S. (2012) Surfactant Proteins A and D in Pulmonary Diseases of Preterm Infants. Expert Review of Anti-infective Therapy, 10, 573-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Garg, B.D., Bansal, A. and Kabran, S. (2019) Role of Vitamin A Supplementation in Prevention of Bronchopulmonary Dysplasia in Extremely Low Birthweight Neonates: A Systematic Review of Randomized Trials. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 2608-2615. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Huang, L., Zhu, D.Q. and Pang G.F., (2021) The Effects of Early Vitamin A Supplementation on the Prevention and Treatment of Bronchopulmonary Dysplasia in Premature Infants: A Systematic Review and Meta-Analysis. Translational Pediatrics, 10, 3218-3229. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Rakshasbhuvankar, A.A., Simmer, K., Patole, S.K., et al. (2021) Enteral Vitamin A for Reducing Severity of Bronchopulmonary Dysplasia: A Randomized Trial. Pediatrics, 147, e2020009985. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Muyayalo, K.P., Huang, X.B., Qian, Z., et al. (2019) Low Circulating Levels of Vitamin D May Contribute to the Occurrence of Preeclampsia through Deregulation of Treg/Th17 Cell Ratio. American Journal of Reproductive Immunology, 82, e13168. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mao, X.N., Qiu, J., Zhao, L., et al. (2018) Vitamin D and IL-10 Defi-ciency in Preterm Neonates with Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 6, Article 246. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, Y., Li, Q., Liu, Y., et al. (2015) Attenuation of Hy-peroxiainduced Lung Injury in Neonatal Rats by 1α, 25-Dihydroxyvitamin D3. Experimental Lung Research, 41, 344-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Fort, P., Salas, A.A., Nicola, T., et al. (2016) A Comparison of 3 Vitamin D Dosing Regimens in Extremely Preterm Infants: A Randomized Controlled Trial. The Journal of Pediatrics, 174, 132-138.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Olin, A., Henckel, E., Chen, Y., et al. (2018) Stereotypic Immune System Development in Newborn Children. Cell, 174, 1277-1292.E14. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Belizario, J.E., Faintuch, J. and Garay-Malpartida, M. (2018) Gut Microbiome Dysbiosis Andimmunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of Inflammation, 2018, Article ID: 2037838. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Shukla, S.D., Budden, K.F., Neal, R. and Hansbro, P.M. (2017) Microbiome Effects on Immunity, Health and Disease in the Lung. Clinical & Translational Immunology, 6, e133. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, K., He, S.S. and Dong, W.B. (2021) Gut Microbiota and Bronchopulmonary Dysplasia. Pediatric Pulmonology, 56, 2460-2470. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yang, K. and Dong, W. (2020) Perspectives on Probiotics and Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 8, Article 570247. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pammi, M., Vivek Lal, C., Wagner, B.D., et al. (2019) Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. The Journal of Pediatrics, 204, 126-133.E2. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Willis, K.A., Siefker, D.T., Aziz, M.M., et al. (2020) Peri-natal Maternal Antibiotic Exposure Augments Lung Injury in Offspring in Experimental Bronchopulmonary Dys-plasia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 318, L407-L418. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Witkowski, S.M., De Castro, E.M., Nagashima, S., et al. (2020) Analysis of Interleukins 6, 8, 10 and 17 in the Lungs of Premature Neonates with Bronchopulmonary Dysplasia. Cytokine, 131, Article ID: 155118. [Google Scholar] [CrossRef] [PubMed]
|