|
[1]
|
Chen, Y.J., Peng, Q., Yang, Y., et al. (2019) The Prevalence and Increasing Trends of Overweight, General Obesity, and Abdominal Obesity among Chinese Adults: A Repeated Cross-Sectional Study. BMC Public Health, 19, Article No. 1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Münzberg, H. and Jr Myers, M.G. (2005) Molecular and Anatomical Determinants of Central Leptin Resistance. Nature Neuroscience, 8, 566-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
顾岩, 杨建军. 减重代谢外科胃袖状切除术附加手术的现状与未来[J]. 上海医学, 2021, 44(8): 566-570.
|
|
[4]
|
Sehgal, K. and Khanna, S. (2021) Gut Microbiota: A Target for Intervention in Obesity. Expert Review of Gastroenterology & Hepatology, 15, 1169-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Carneiro, I.P., Elliott, S.A., Siervo, M., et al. (2016) Is Obe-sity Associated with Altered Energy Expenditure? Advances in Nutrition, 7, 476-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Oussaada, S.M., Van Galen, K.A., Cooiman, M.I., et al. (2019) The Pathogenesis of Obesity. Metabolism-Clinical and Experimental, 92, 26-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lutter, M. and Nestler, E.J. (2009) Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. The Journal of Nutrition, 139, 629-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ferrario, C.R., Labouèbe, G., Liu, S., et al. (2016) Homeostasis Meets Motivation in the Battle to Control Food Intake. Journal of Neuroscience, 36, 11469-11481. [Google Scholar] [CrossRef]
|
|
[9]
|
Swen, H., Michael, R., Julia, L., et al. (2015) Central Serotonin Transporter Availability in Highly Obese Individuals Compared with Non-Obese Controls: A [11C] DASB Positron Emission Tomography Study. European Journal of Nuclear Medicine and Molecular Imaging, 43, 1096-1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lam, D.D., Garfield, A.S., Marston, O.J., et al. (2010) Brain Ser-otonin System in the Coordination of Food Intake and Body Weight. Pharmacology Biochemistry and Behavior, 97, 84-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jastreboff, A.M., Sinha, R., Lacadie, C., et al. (2012) Neural Correlates of Stress- and Food Cue-Induced Food Craving in Obesity: Association with Insulin Levels. Diabetes Care, 36, 394-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Szalay, C., Aradi, M., Schwarcz, A., et al. (2012) Gustatory Perception Alterations in Obesity: An fMRI Study. Brain Research, 1473, 131-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Blum, K., Thanos, P.K. and Gold, M.S. (2014) Dopamine and Glucose, Obesity, and Reward Deficiency Syndrome. Frontiers in Psychology, 5, Article 919. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, G.-J., Tomasi, D., Convit, A, et al. (2014) BMI Modulates Calorie-Dependent Dopamine Changes in Accumbens from Glucose Intake. PLOS ONE, 9, e101585. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Choudhury, S.M., Tan, T.M. and Bloom, S.R. (2016) Gastroin-testinal Hormones and Their Role in Obesity. Current Opinion in Endocrinology & Diabetes and Obesity, 23, 18-22. [Google Scholar] [CrossRef]
|
|
[16]
|
Chaudhri, O., Small, C. and Bloom, S. (2006) Gastrointes-tinal Hormones Regulating Appetite. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1187-1209. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
王珊珊, 韩永和, 李敏. 饮食和肠道微生物对肥胖的代谢调控作用与机制[J]. 生命的化学, 2021, 41(3): 541-551.
|
|
[18]
|
Ndahimana, D. and Kim, E.-K. (2017) Measurement Methods for Physical Activity and Energy Expenditure: A Review. Clinical Nutrition Research, 6, 68-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Speakman, J.R. and Król, E. (2011) Limits to Sustained Energy Intake. XIII. Recent Progress and Future Perspectives. Journal of Experimental Biology, 214, 230-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Annemiek, J., Marij, G., Robert, V., et al. (2005) Genetic Analysis of Physical Activity in Twins. The American Journal of Clinical Nutrition, 82, 1253-1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shields, M. and Tremblay, M.S. (2008) Sedentary Behaviour and Obe-sity. Health Reports, 19, 19-30.
|
|
[22]
|
Kim, E.-K., Miller, I., Aja, S., et al. (2004) C75, a Fatty Acid Synthase Inhibitor, Reduces Food Intake via Hypothalamic AMP-Activated Protein Kinase. Journal of Biological Chemistry, 279, 19970-19976. [Google Scholar] [CrossRef]
|
|
[23]
|
Yu, L. and Yang, S.J. (2010) AMP-Activated Protein Kinase Medi-ates Activity-Dependent Regulation of Peroxisome Proliferator-Activated Receptor γ Coactivator-1α and Nuclear Respir-atory Factor 1 Expression in Rat Visual Cortical Neurons. Neuroscience, 169, 23-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hitze, B., Van Dyken, R., Hubold, C., et al. (2010) How the Selfish Brain Organizes Its Supply and Demand. Frontiers in Neuroenergetics, 2, Article No. 7.
|
|
[25]
|
马克•克拉雷特, 马克•史密斯, 雷切尔•L•巴特勒姆, 等. AMPK对POMC和AgRP神经元的能量稳态调节和葡萄糖感应至关重要[J]. 临床投资杂志, 2007, 117(8): 2325-2336.
|
|
[26]
|
Minokoshi, Y., Alquier, T., Furukawa, N., et al. (2004) AMP-Kinase Regulates Food Intake by Responding to Hormonal and Nutrient Signals in the Hypothalamus. Nature, 428, 569-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Martin, T.L. Alquier, T., Asakura, K., et al. (2006) Diet-Induced Obesity Alters AMP Kinase Activity in Hypothalamus and Skeletal Muscle. Journal of Biological Chemistry, 281, 18933-18941. [Google Scholar] [CrossRef]
|
|
[28]
|
Bensellam, M., Jonas, J. and Laybutt, D.R. (2017) Mechanisms of β-Cell Dedifferentiation in Diabetes: Recent Findings and Future Research Directions. Journal of Endocrinology, 236, R109-R143. [Google Scholar] [CrossRef]
|
|
[29]
|
Musi, N., Hirshman, M.F., Nygren, J., et al. (2002) Metformin Increas-es AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects with Type 2 Diabetes. Diabetes, 51, 2074-2081. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
李娟娟, 凌文华. AMPK与肥胖[J]. 国际内科学杂志, 2007, 34(11): 649-653.
|
|
[31]
|
Cokorinos, E.C., Delmore, J., Reyes, A.R., et al. (2017) Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-Human Primates and Mice. Cell Metabolism, 25, 1147-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Myers, R.W., Guan, H.-P., Ehrhart, J., et al. (2017) Systemic Pan-AMPK Activator MK-8722 Improves Glucose Homeostasis but Induces Cardiac Hypertrophy. Science, 357, 507-511.
|
|
[33]
|
沈文清, 何标, 丁树哲. AMPK——运动调控骨骼肌糖脂代谢的重要激酶[J]. 生命科学, 2022, 34(6): 631-643.
https://kns.cnki.net/kcms2/article/abstract?v=Vof-4b7nxdDQdcYX68K5PYvOiTNs7qFwCapwjljiBkx_arXKknYEi9w7
ymB6WhTx37DWKKBiLlY1J8ZqfoLIUDaj7Mw455qCoA3tQP9-NGZRiOwETLUKUiUjvD0jPN6k&uniplatform=CHKD&flag=copy
|
|
[34]
|
Hatakeyama, H., Morino, T., Ishii, T., et al. (2018) Cooperative Actions of Tbc1d1 and AS160/Tbc1d4 in GLUT4- Trafficking Activities. Journal of Biological Chemistry, 294, 1161-1172. [Google Scholar] [CrossRef]
|
|
[35]
|
Blüher, M. and Mantzoros, C.S. (2014) From Leptin to Other Ad-ipokines in Health and Disease: Facts and Expectations at the Beginning of the 21st Century. Metabolism-Clinical and Experimental, 64, 131-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Fazolini, N.P.B., Cruz, A.L.S., Werneck, M.B.F., et al. (2015) Leptin Activation of mTOR Pathway in Intestinal Epithelial Cell Triggers Lipid Droplet Formation, Cytokine Production and Increased Cell Proliferation. Cell Cycle, 14, 2667-2676. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Barrios-Correa, A.A., Estrada, J.A. and Contreras, I. (2018) Leptin Signaling in the Control of Metabolism and Appetite: Lessons from Animal Models. Journal of Molecular Neu-roscience, 66, 390-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Moon, H.S., Huh, J.Y., Dincer, F., et al. (2014) Identification and Saturable Nature of Signaling Pathways Induced by Metreleptin in Humans: Comparative Evaluation of in vivo, ex vivo, and in vitro Administration. Diabetes, 64, 828-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Frühbeck, G. (2006) Intracellular Signalling Pathways Activated by Leptin. Biochemical Journal, 393, 7-20. [Google Scholar] [CrossRef]
|
|
[40]
|
Soares, J.B. and Leite-Moreira, A.F. (2008) Ghrelin, Des-Acyl Ghrelin and Obestatin Three Pieces of the Same Puzzle. Peptides, 29, 1255-1270. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mihalache, L., Gherasim, A., Otilia, N., et al. (2016) Effects of Ghrelin in Energy Balance and Body Weight Homeostasis. Hormones, 15, 186-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Mundinger, T.O., Cummings, D.E. and Taborsky, G.J. (2006) Di-rect Stimulation of Ghrelin Secretion by Sympathetic Nerves. Endocrinology, 147, 2893-2901. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cummings, D.E. and Joost, O. (2007) Gastrointestinal Regulation of Food Intake. Journal of Clinical Investigation, 117, 13-23. [Google Scholar] [CrossRef]
|
|
[44]
|
Stevanovic, D., Trajkovic, V., Müller-Lühlhoff, S., et al. (2013) Ghrelin-Induced Food Intake and Adiposity Depend on Central mTORC1/S6K1 Signaling. Molecular and Cellular Endocrinology, 381, 280-290. [Google Scholar] [CrossRef] [PubMed]
|