|
[1]
|
Wekerle, T., Segev, D., Lechler, R., et al. (2017) Strategies for Long-Term Preservation of Kidney Graft Function. The Lancet, 389, 2152-2162. [Google Scholar] [CrossRef]
|
|
[2]
|
Yáñez-Mó, M., Siljander, P.R.M., Andreu, Z., et al. (2015) Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4, 27066-27098.
|
|
[3]
|
Street, J.M., Barran, P.E., Mackay, C.L., et al. (2012) Identification and Proteomic Profiling of Exosomes in Human Cerebrospinal Fluid. Journal of Translational Medicine, 10, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jeppesen, D.K., Zhang, Q., Franklin, J.L., et al. (2023) Extracellular Vesicles and Nanoparticles: Emerging Complexities. Trends in Cell Biology, 33, 667-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sailliet, N., Ullah, M., Dupuy, A., et al. (2022) Extracellular Vesicles in Transplantation. Frontiers in Immunology, 13, Article ID: 800018. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gholizadeh, S., Shehata, Draz, M., Zarghooni, M., et al. (2017) Microfluidic Approaches for Isolation, Detection, and Characterization of Extracellular Vesicles: Current Status and Future Directions. Biosensors and Bioelectronics, 91, 588-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Karpman, D., Ståhl, A.-L. and Arvidsson, I. (2017) Extracellular Vesicles in Renal Disease. Nature Reviews Nephrology, 13, 545-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sedgwick, A.E. and D’Souza-Schorey, C. (2018) The Biology of Extracellular Microvesicles. Traffic, 19, 319-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Frankel, E.B. and Audhya, A. (2018) ESCRT-Dependent Cargo Sorting at Multivesicular Endosomes. Seminars in Cell & Developmental Biology, 74, 4-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tan, M., Ge, Y., Wang, X., et al. (2023) Extracellular Vesicles (EVs) in Tumor Diagnosis and Therapy. Technology in Cancer Research & Treatment, 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hyenne, V., Labouesse, M. and Goetz, J.G. (2018) The Small GTPase Ral Orchestrates MVB Biogenesis and Exosome Secretion. Small GTPases, 9, 445-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Santavanond, J.P., Rutter, S.F., Atkin-Smith, G.K., et al. (2021) Apoptotic Bodies: Mechanism of Formation, Isolation and Functional Relevance. Subcellular Biochemistry, 97, 61-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mahmoudi, F., Hanachi, P. and Montaseri, A. (2023) Extracellular Vesicles of Immune Cells; Immunomodulatory Impacts and Therapeutic Potentials. Clinical Immunology, 248, Article ID: 109237. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Höög, J.L. and Lötvall, J. (2015) Diversity of Extracellular Vesicles in Human Ejaculates Revealed by Cryo-Electron Microscopy. Journal of Extracellular Vesicles, 4, 28680. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Théry, C., Witwer, K.W., Aikawa, E., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Théry, C., Amigorena, S., Raposo, G., et al. (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology, 30, 3.22.1-3.22.29. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, P., Kaslan, M., Lee, S.H., et al. (2017) Progress in Exosome Isolation Techniques. Theranostics, 7, 789-804. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Stam, J., Bartel, S., Bischoff, R., et al. (2021) Isolation of Extracellular Vesicles with Combined Enrichment Methods. Journal of Chromatography B, 1169, Article ID: 122604. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Al-Massarani, G., Vacher-Coponat, H., Paul, P., et al. (2009) Kidney Transplantation Decreases the Level and Procoagulant Activity of Circulating Microparticles. American Journal of Transplantation, 9, 550-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Qamri, Z., Pelletier, R., Foster, J., et al. (2014) Early Posttransplant Changes in Circulating Endothelial Microparticles in Patients with Kidney Transplantation. Transplant Immunology, 31, 60-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sigdel, K.R., Cheng, A., Wang, Y., et al. (2015) The Emerging Functions of Long Noncoding RNA in Immune Cells: Autoimmune Diseases. Journal Of Immunology Research, 2015, Article ID: 848790. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Park, J., Lin, H.-Y., Assaker, J.P., et al. (2017) Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection. ACS Nano, 11, 11041-11046. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, H., Huang, E., Kahwaji, J., et al. (2017) Plasma Exosomes from HLA-Sensitized Kidney Transplant Recipients Contain MRNA Transcripts Which Predict Development of Antibody-Mediated Rejection. Transplantation, 101, 2419-2428. [Google Scholar] [CrossRef]
|
|
[25]
|
Chen, Y., Han, X., Sun, Y., et al. (2020) A Circulating Exosomal MicroRNA Panel as a Novel Biomarker for Monitoring Post-Transplant Renal Graft Function. Journal of Cellular and Molecular Medicine, 24, 12154-12163. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Braun, F., Rinschen, M., Buchner, D., et al. (2020) The Proteomic Landscape of Small Urinary Extracellular Vesicles during Kidney Transplantation. Journal of Extracellular Vesicles, 10, E12026. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, A.-B., Peng, Y.-F., Jia, J.-J., et al. (2019) Exosome-Derived Galectin-9 May Be a Novel Predictor of Rejection and Prognosis after Liver Transplantation. Journal of Zhejiang University. Science B, 20, 605-612. [Google Scholar] [CrossRef]
|
|
[28]
|
Wang, W., Li, W., Cao, L., et al. (2022) Serum Extracellular Vesicle MicroRNAs as Candidate Biomarkers for Acute Rejection in Patients Subjected to Liver Transplant. Frontiers in Genetics, 13, Article ID: 1015049. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cui, B., Sun, J., Li, S.-P., et al. (2022) CD80 Dendritic Cell Derived Exosomes Inhibit CD8 T Cells through Down-Regulating NLRP3 Expression after Liver Transplantation. International Immunopharmacology, 109, Article ID: 108787. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Singh, N., Vanhaecke, J., Van Cleemput, J., et al. (2015) Markers of Endothelial Injury and Platelet Microparticles Are Distinct in Patients with Stable Native Coronary Artery Disease and with Cardiac Allograft Vasculopathy. International Journal of Cardiology, 179, 331-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Habertheuer, A., Korutla, L., Rostami, S., et al. (2018) Donor Tissue-Specific Exosome Profiling Enables Noninvasive Monitoring of Acute Rejection in Mouse Allogeneic Heart Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 155, 2479-2489. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Joo, S., Dhaygude, K., Westerberg, S., et al. (2023) Transcriptomic Landscape of Circulating Extracellular Vesicles in Heart Transplant Ischemia-Reperfusion. Genes (Basel), 14, Article No. 2101. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kennel, P.J., Saha, A., Maldonado, D.A., et al. (2018) Serum Exosomal Protein Profiling for the Non-Invasive Detection of Cardiac Allograft Rejection. The Journal of Heart and Lung Transplantation, 37, 409-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sukma Dewi, I., Celik, S., Karlsson, A., et al. (2017) Exosomal MiR-142-3p Is Increased during Cardiac Allograft Rejection and Augments Vascular Permeability through Down-Regulation of Endothelial RAB11FIP2 Expression. Cardiovascular Research, 113, 440-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mattke, J., Vasu, S., Darden, C.M., et al. (2021) Role of Exosomes in Islet Transplantation. Frontiers in Endocrinology (Lausanne), 12, Article ID: 681600. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Boardman, D.A., Jacob, J., Smyth, L.A., et al. (2016) What Is Direct Allorecognition? Current Transplantation Reports, 3, 275-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Benichou, G., Takizawa, P.A., Olson, C.A., et al. (1992) Donor Major Histocompatibility Complex (MHC) Peptides Are Presented by Recipient MHC Molecules during Graft Rejection. Journal of Experimental Medicine, 175, 305-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Vallabhajosyula, P., Korutla, L., Habertheuer, A., et al. (2017) Tissue-Specific Exosome Biomarkers for Noninvasively Monitoring Immunologic Rejection of Transplanted Tissue. Journal of Clinical Investigation, 127, 1375-1391. [Google Scholar] [CrossRef]
|
|
[39]
|
Gunasekaran, M., Xu, Z., Nayak, D.K., et al. (2017) Donor-Derived Exosomes with Lung Self-Antigens in Human Lung Allograft Rejection. American Journal of Transplantation, 17, 474-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gunasekaran, M., Sharma, M., Hachem, R., et al. (2018) Circulating Exosomes with Distinct Properties during Chronic Lung Allograft Rejection. The Journal of Immunology, 200, 2535-2541. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Habertheuer, A., Ram, C., Schmierer, M., et al. (2022) Circulating Donor Lung-Specific Exosome Profiles Enable Noninvasive Monitoring of Acute Rejection in a Rodent Orthotopic Lung Transplantation Model. Transplantation, 106, 754-766. [Google Scholar] [CrossRef]
|
|
[42]
|
Gregson, A.L., Hoji, A., Injean, P., et al. (2015) Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. American Journal of Respiratory and Critical Care Medicine, 192, 1490-1503. [Google Scholar] [CrossRef]
|
|
[43]
|
Hwang, B., Bryers, J. and Mulligan, M.S. (2021) Potential Role of Exosome-Based Allorecognition Pathways Involved in Lung Transplant Rejection. The Journal of Thoracic and Cardiovascular Surgery, 161, E129-E134. [Google Scholar] [CrossRef] [PubMed]
|